diff --git a/sklearn/ensemble/_bagging.py b/sklearn/ensemble/_bagging.py index d40f1717f469f..5c62f8e2411a3 100644 --- a/sklearn/ensemble/_bagging.py +++ b/sklearn/ensemble/_bagging.py @@ -546,14 +546,11 @@ class BaggingClassifier(ClassifierMixin, BaseBagging): >>> from sklearn.svm import SVC >>> from sklearn.ensemble import BaggingClassifier >>> from sklearn.datasets import make_classification - >>> X, y = make_classification(n_samples=1000, n_features=4, + >>> X, y = make_classification(n_samples=100, n_features=4, ... n_informative=2, n_redundant=0, ... random_state=0, shuffle=False) - >>> clf = BaggingClassifier(n_estimators=100, random_state=0).fit(X, y) - >>> clf.predict([[0, 0, 0, 0]]) - array([1]) >>> clf = BaggingClassifier(base_estimator=SVC(), - ... n_estimators=100, random_state=0).fit(X, y) + ... n_estimators=10, random_state=0).fit(X, y) >>> clf.predict([[0, 0, 0, 0]]) array([1]) @@ -935,6 +932,19 @@ class BaggingRegressor(RegressorMixin, BaseBagging): `oob_prediction_` might contain NaN. This attribute exists only when ``oob_score`` is True. + Examples + -------- + >>> from sklearn.svm import SVR + >>> from sklearn.ensemble import BaggingRegressor + >>> from sklearn.datasets import make_regression + >>> X, y = make_regression(n_samples=100, n_features=4, + ... n_informative=2, n_targets=1, + ... random_state=0, shuffle=False) + >>> regr = BaggingRegressor(base_estimator=SVR(), + ... n_estimators=10, random_state=0).fit(X, y) + >>> regr.predict([[0, 0, 0, 0]]) + array([-2.8720...]) + References ----------