diff --git a/sklearn/svm/classes.py b/sklearn/svm/classes.py index 1028843a9bf19..b498a1b17780c 100644 --- a/sklearn/svm/classes.py +++ b/sklearn/svm/classes.py @@ -553,6 +553,22 @@ class SVC(BaseSVC): intercept_ : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. + fit_status_ : int + 0 if correctly fitted, + 1 otherwise (will raise warning) + + probA_, probB_ : array, shape = [n_class * (n_class-1) / 2] + + If probability=True, the parameters learned in Platt scaling to + produce probability estimates from decision values. If + probability=False, an empty array. Platt scaling uses the logistic + function + ``1 / (1 + exp(decision_value * probA_ + probB_))`` + where ``probA_`` and ``probB_`` are learned from the dataset. For more + information on the multiclass case and training procedure see section + 8 of LIBSVM: A Library for Support Vector Machines (in References) + for more. + Examples -------- >>> import numpy as np @@ -578,6 +594,11 @@ class SVC(BaseSVC): implemented using liblinear. Check the See also section of LinearSVC for more comparison element. + References + -------- + [1] LIBSVM + A Library for Support Vector Machines + """ _impl = 'c_svc'