diff --git a/sklearn/compose/_column_transformer.py b/sklearn/compose/_column_transformer.py index 7a83b4d064e66..60c1deea1c989 100644 --- a/sklearn/compose/_column_transformer.py +++ b/sklearn/compose/_column_transformer.py @@ -731,6 +731,8 @@ def make_column_transformer(*transformers, **kwargs): ['categorical_column'])]) """ + # transformer_weights keyword is not passed through because the user + # would need to know the automatically generated names of the transformers n_jobs = kwargs.pop('n_jobs', None) remainder = kwargs.pop('remainder', 'drop') sparse_threshold = kwargs.pop('sparse_threshold', 0.3) diff --git a/sklearn/compose/tests/test_column_transformer.py b/sklearn/compose/tests/test_column_transformer.py index 149df575efae7..ef2ed5b49eb6d 100644 --- a/sklearn/compose/tests/test_column_transformer.py +++ b/sklearn/compose/tests/test_column_transformer.py @@ -454,12 +454,12 @@ def test_make_column_transformer_kwargs(): norm = Normalizer() ct = make_column_transformer(('first', scaler), (['second'], norm), n_jobs=3, remainder='drop', - sparse_threshold=0.3) + sparse_threshold=0.5) assert_equal(ct.transformers, make_column_transformer( ('first', scaler), (['second'], norm)).transformers) assert_equal(ct.n_jobs, 3) assert_equal(ct.remainder, 'drop') - assert_equal(ct.sparse_threshold, 0.3) + assert_equal(ct.sparse_threshold, 0.5) # invalid keyword parameters should raise an error message assert_raise_message( TypeError,