diff --git a/sklearn/manifold/isomap.py b/sklearn/manifold/isomap.py index cc2bca1c1c0c8..9f9096806f17d 100644 --- a/sklearn/manifold/isomap.py +++ b/sklearn/manifold/isomap.py @@ -80,6 +80,18 @@ class Isomap(BaseEstimator, TransformerMixin): dist_matrix_ : array-like, shape (n_samples, n_samples) Stores the geodesic distance matrix of training data. + Examples + -------- + >>> from sklearn.datasets import load_digits + >>> from sklearn.manifold import Isomap + >>> X, _ = load_digits(return_X_y=True) + >>> X.shape + (1797, 64) + >>> embedding = Isomap(n_components=2) + >>> X_transformed = embedding.fit_transform(X[:100]) + >>> X_transformed.shape + (100, 2) + References ---------- diff --git a/sklearn/manifold/locally_linear.py b/sklearn/manifold/locally_linear.py index a30084abd506b..b38f7499baca9 100644 --- a/sklearn/manifold/locally_linear.py +++ b/sklearn/manifold/locally_linear.py @@ -598,6 +598,18 @@ class LocallyLinearEmbedding(BaseEstimator, TransformerMixin): Stores nearest neighbors instance, including BallTree or KDtree if applicable. + Examples + -------- + >>> from sklearn.datasets import load_digits + >>> from sklearn.manifold import LocallyLinearEmbedding + >>> X, _ = load_digits(return_X_y=True) + >>> X.shape + (1797, 64) + >>> embedding = LocallyLinearEmbedding(n_components=2) + >>> X_transformed = embedding.fit_transform(X[:100]) + >>> X_transformed.shape + (100, 2) + References ---------- diff --git a/sklearn/manifold/mds.py b/sklearn/manifold/mds.py index 3ef750d4cb9f2..1f5ef8d2e9f75 100644 --- a/sklearn/manifold/mds.py +++ b/sklearn/manifold/mds.py @@ -340,6 +340,17 @@ class MDS(BaseEstimator): The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points). + Examples + -------- + >>> from sklearn.datasets import load_digits + >>> from sklearn.manifold import MDS + >>> X, _ = load_digits(return_X_y=True) + >>> X.shape + (1797, 64) + >>> embedding = MDS(n_components=2) + >>> X_transformed = embedding.fit_transform(X[:100]) + >>> X_transformed.shape + (100, 2) References ---------- diff --git a/sklearn/manifold/spectral_embedding_.py b/sklearn/manifold/spectral_embedding_.py index d23a988cc3a54..62922b060f078 100644 --- a/sklearn/manifold/spectral_embedding_.py +++ b/sklearn/manifold/spectral_embedding_.py @@ -395,6 +395,18 @@ class SpectralEmbedding(BaseEstimator): affinity_matrix_ : array, shape = (n_samples, n_samples) Affinity_matrix constructed from samples or precomputed. + Examples + -------- + >>> from sklearn.datasets import load_digits + >>> from sklearn.manifold import SpectralEmbedding + >>> X, _ = load_digits(return_X_y=True) + >>> X.shape + (1797, 64) + >>> embedding = SpectralEmbedding(n_components=2) + >>> X_transformed = embedding.fit_transform(X[:100]) + >>> X_transformed.shape + (100, 2) + References ----------