You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Training an MLP regressor (or classifier) using l-bfgs currently cannot run for more than (approx) 15000 iterations.
This artificial limit is caused by the call site to l-bfgs passing the MLP argument value "max_iters" to the argument for "maxfun" (maximum number of function calls), but not for "maxiter" (maximum number of iterations), so that no matter how large a number you pass as "max_iters" to train for MLP, the iterations are capped by the default value for maxiter (15000).
Steps/Code to Reproduce
Fit an MLP for a problem that requires > 15000 iterations
We should make sure that if the user passes a max_iter that's greater than the default maxiter we change maxiter as well. I think using maxfun instead of maxiter makes sense as it makes the computation more comparable to the other solvers, but we should document better.
Uh oh!
There was an error while loading. Please reload this page.
Description
Training an MLP regressor (or classifier) using l-bfgs currently cannot run for more than (approx) 15000 iterations.
This artificial limit is caused by the call site to l-bfgs passing the MLP argument value "max_iters" to the argument for "maxfun" (maximum number of function calls), but not for "maxiter" (maximum number of iterations), so that no matter how large a number you pass as "max_iters" to train for MLP, the iterations are capped by the default value for maxiter (15000).
Steps/Code to Reproduce
Fit an MLP for a problem that requires > 15000 iterations
Here is an example (tested in python 2.7):
https://gist.github.com/daniel-perry/d9e356a03936673e58e0ce47d5fc70ef
(you will need data.npy from the gist linked to above)
Expected Results
The training should run for 18000 iterations.
Actual Results
The training runs for 15000 iterations.
Versions
Here are my local version details, though the problem appears to exist on the current head, and so should exist for any python/sklearn versions.
'Python', '2.7.12 (default, Jul 1 2016, 15:12:24) \n[GCC 5.4.0 20160609]'
'NumPy', '1.13.0'
'SciPy', '0.19.1'
'Scikit-Learn', '0.18'
The text was updated successfully, but these errors were encountered: