You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
With numpy master, warnings during test (using NumpyTester) are treated as errors. This should encouraging us to get rid of these warnings during the tests (for instance by capturing them):
======================================================================
ERROR: sklearn.cluster.tests.test_k_means.test_kmeans_dtype
----------------------------------------------------------------------
Traceback (most recent call last):
File "/usr/lib/pymodules/python2.7/nose/case.py", line 187, in runTest
self.test(*self.arg)
File "/home/varoquau/dev/scikit-learn/sklearn/cluster/tests/test_k_means.py", line 51, in test_kmeans_dtype
assert_array_equal(km.labels_, km.predict(X))
File "/home/varoquau/dev/scikit-learn/sklearn/cluster/k_means_.py", line 785, in predict
X = self._check_test_data(X)
File "/home/varoquau/dev/scikit-learn/sklearn/cluster/k_means_.py", line 716, in _check_test_data
RuntimeWarning, stacklevel=2)
RuntimeWarning: Got data type uint8, converted to float to avoid overflows
======================================================================
ERROR: sklearn.cluster.tests.test_k_means.test_minibatch_init_with_large_k
----------------------------------------------------------------------
Traceback (most recent call last):
File "/usr/lib/pymodules/python2.7/nose/case.py", line 187, in runTest
self.test(*self.arg)
File "/home/varoquau/dev/scikit-learn/sklearn/cluster/tests/test_k_means.py", line 243, in test_minibatch_init_with_large_k
mb_k_means.fit(X)
File "/home/varoquau/dev/scikit-learn/sklearn/cluster/k_means_.py", line 1110, in fit
init_size=init_size)
File "/home/varoquau/dev/scikit-learn/sklearn/cluster/k_means_.py", line 556, in _init_centroids
RuntimeWarning, stacklevel=2)
RuntimeWarning: init_size=10 should be larger than k=20. Setting it to 3*k
======================================================================
ERROR: sklearn.feature_extraction.tests.test_text.test_tfidf_no_smoothing
----------------------------------------------------------------------
Traceback (most recent call last):
File "/usr/lib/pymodules/python2.7/nose/case.py", line 187, in runTest
self.test(*self.arg)
File "/home/varoquau/dev/scikit-learn/sklearn/feature_extraction/tests/test_text.py", line 264, in test_tfidf_no_smoothing
tfidf = tr.fit_transform(X).toarray()
File "/home/varoquau/dev/scikit-learn/sklearn/base.py", line 360, in fit_transform
return self.fit(X, **fit_params).transform(X)
File "/home/varoquau/dev/scikit-learn/sklearn/feature_extraction/text.py", line 580, in fit
self.idf_ = np.log(float(n_samples) / df) + 1.0
RuntimeWarning: divide by zero encountered in divide
======================================================================
ERROR: Compute the Adjusted Mutual Information and test against known values
----------------------------------------------------------------------
Traceback (most recent call last):
File "/usr/lib/pymodules/python2.7/nose/case.py", line 187, in runTest
self.test(*self.arg)
File "/home/varoquau/dev/scikit-learn/sklearn/metrics/cluster/tests/test_supervised.py", line 158, in test_adjusted_mutual_info_score
ami = adjusted_mutual_info_score(a110, b110)
File "/home/varoquau/dev/scikit-learn/sklearn/metrics/cluster/supervised.py", line 628, in adjusted_mutual_info_score
emi = expected_mutual_information(contingency, n_samples)
File "/home/varoquau/dev/scikit-learn/sklearn/metrics/cluster/supervised.py", line 678, in expected_mutual_information
emi += (term1[nij] * term2 * term3)
RuntimeWarning: underflow encountered in double_scalars
======================================================================
ERROR: sklearn.svm.tests.test_svm.test_linearsvc_deepcopy
----------------------------------------------------------------------
Traceback (most recent call last):
File "/usr/lib/pymodules/python2.7/nose/case.py", line 187, in runTest
self.test(*self.arg)
File "/home/varoquau/dev/scikit-learn/sklearn/svm/tests/test_svm.py", line 608, in test_linearsvc_deepcopy
copy.deepcopy(clf).predict(rng.rand(2))
File "/home/varoquau/dev/scikit-learn/sklearn/svm/base.py", line 703, in predict
X = self._validate_for_predict(X)
File "/home/varoquau/dev/scikit-learn/sklearn/svm/base.py", line 761, in _validate_for_predict
stacklevel=3)
RuntimeWarning: Coefficients are the fortran-contiguous. Copying them.
======================================================================
ERROR: sklearn.tests.test_cross_validation.test_shuffle_split_warnings
----------------------------------------------------------------------
Traceback (most recent call last):
File "/usr/lib/pymodules/python2.7/nose/case.py", line 187, in runTest
self.test(*self.arg)
File "/home/varoquau/dev/scikit-learn/sklearn/tests/test_cross_validation.py", line 173, in test_shuffle_split_warnings
cval.ShuffleSplit(10, 3, test_fraction=0.1)
File "/home/varoquau/dev/scikit-learn/sklearn/cross_validation.py", line 767, in __init__
DeprecationWarning, stacklevel=2)
DeprecationWarning: test_fraction is deprecated in 0.11 and scheduled for removal in 0.12, use test_size instead
======================================================================
ERROR: sklearn.tests.test_multiclass.test_ecoc_fit_predict
----------------------------------------------------------------------
Traceback (most recent call last):
File "/usr/lib/pymodules/python2.7/nose/case.py", line 187, in runTest
self.test(*self.arg)
File "/home/varoquau/dev/scikit-learn/sklearn/tests/test_multiclass.py", line 196, in test_ecoc_fit_predict
ecoc.fit(iris.data, iris.target).predict(iris.data)
File "/home/varoquau/dev/scikit-learn/sklearn/multiclass.py", line 431, in fit
fit_ecoc(self.estimator, X, y, self.code_size, self.random_state)
File "/home/varoquau/dev/scikit-learn/sklearn/multiclass.py", line 337, in fit_ecoc
for i in range(Y.shape[1])]
File "/home/varoquau/dev/scikit-learn/sklearn/multiclass.py", line 33, in _fit_binary
estimator.fit(X, y)
File "/home/varoquau/dev/scikit-learn/sklearn/naive_bayes.py", line 269, in fit
self.class_log_prior_ = np.log(y_freq) - np.log(y_freq.sum())
RuntimeWarning: divide by zero encountered in log
----------------------------------------------------------------------
The text was updated successfully, but these errors were encountered:
With numpy master, warnings during test (using NumpyTester) are treated as errors. This should encouraging us to get rid of these warnings during the tests (for instance by capturing them):
The text was updated successfully, but these errors were encountered: