### Describe the bug ## By setting the copy=False, ndarray data has not changed unexpectedly  ### Steps/Code to Reproduce ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt import sklearn.preprocessing as pre np.random.seed(10) data = np.random.randint(1, 10, size=(5, 3)) print(data) pre.minmax_scale(data, feature_range=(0, 1), axis=0, copy=False) print(data) ``` ### Expected Results ## A reasonable explanation about the copy parameter of minmax_scala funciton ### Actual Results # There are no warings and errors, just the result is not wrong!  ### Versions ```shell Python dependencies: sklearn: 1.3.0 pip: 23.2.1 setuptools: 65.5.0 numpy: 1.25.2 scipy: 1.11.2 Cython: None pandas: 2.0.3 matplotlib: 3.7.2 joblib: 1.3.2 threadpoolctl: 3.2.0 ```