8000 Segmentation fault when running test_common.py::test_estimators[NuSVC()-check_classifiers_train(readonly_memmap=True)] · Issue #21361 · scikit-learn/scikit-learn · GitHub
[go: up one dir, main page]

Skip to content
8000

Segmentation fault when running test_common.py::test_estimators[NuSVC()-check_classifiers_train(readonly_memmap=True)] #21361

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
aperezlebel opened this issue Oct 18, 2021 · 23 comments · Fixed by #21702

Comments

@aperezlebel
Copy link
Contributor
aperezlebel commented Oct 18, 2021

Describe the bug

I followed the contributing code guidelines and ran into a segmentation fault when running the test sklearn/tests/test_common.py. It appears to come from libsvm.fit(...).

I am not sure whether it is a problem related to my device or not.

Steps/Code to Reproduce

git clone https://github.com/scikit-learn/scikit-learn.git
cd scikit-learn
python3 -m venv venv
source venv/bin/activate
pip install pip --upgrade
pip install numpy scipy matplotlib pytest sphinx cython ipykernel
pip install --no-build-isolation --editable .
pytest sklearn/tests/test_common.py

Expected Results

No error is thrown.

Actual Results

Fatal Python error: Segmentation fault

Current thread 0x00007fe406b46280 (most recent call first):
  File "/home/aperez/dev/sandbox/scikit-learn/sklearn/svm/_base.py", line 315 in _dense_fit
  File "/home/aperez/dev/sandbox/scikit-learn/sklearn/svm/_base.py", line 255 in fit
  File "/home/aperez/dev/sandbox/scikit-learn/sklearn/utils/estimator_checks.py", line 2091 in check_classifiers_train
  File "/home/aperez/dev/sandbox/scikit-learn/sklearn/utils/_testing.py", line 313 in wrapper
  File "/home/aperez/dev/sandbox/scikit-learn/sklearn/tests/test_common.py", line 109 in test_estimators
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/_pytest/python.py", line 183 in pytest_pyfunc_call
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/pluggy/_callers.py", line 39 in _multicall
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/pluggy/_manager.py", line 80 in _hookexec
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/pluggy/_hooks.py", line 265 in __call__
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/_pytest/python.py", line 1641 in runtest
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/_pytest/runner.py", line 162 in pytest_runtest_call
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/pluggy/_callers.py", line 39 in _multicall
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/pluggy/_manager.py", line 80 in _hookexec
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/pluggy/_hooks.py", line 265 in __call__
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/_pytest/runner.py", line 255 in <lambda>
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/_pytest/runner.py", line 311 in from_call
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/_pytest/runner.py", line 254 in call_runtest_hook
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/_pytest/runner.py", line 215 in call_and_report
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/_pytest/runner.py", line 126 in runtestprotocol
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/_pytest/runner.py", line 109 in pytest_runtest_protocol
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/pluggy/_callers.py", line 39 in _multicall
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/pluggy/_manager.py", line 80 in _hookexec
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/pluggy/_hooks.py", line 265 in __call__
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/_pytest/main.py", line 348 in pytest_runtestloop
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/pluggy/_callers.py", line 39 in _multicall
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/pluggy/_manager.py", line 80 in _hookexec
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/pluggy/_hooks.py", line 265 in __call__
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/_pytest/main.py", line 323 in _main
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/_pytest/main.py", line 269 in wrap_session
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/_pytest/main.py", line 316 in pytest_cmdline_main
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/pluggy/_callers.py", line 39 in _multicall
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/pluggy/_manager.py", line 80 in _hookexec
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/pluggy/_hooks.py", line 265 in __call__
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/_pytest/config/__init__.py", line 162 in main
  File "/home/aperez/dev/sandbox/scikit-learn/venv/lib/python3.8/site-packages/_pytest/config/__init__.py", line 185 in console_main
  File "/home/aperez/dev/sandbox/scikit-learn/venv/bin/pytest", line 8 in <module>
Erreur de segmentation (core dumped)

Versions

System:
    python: 3.8.10 (default, May 27 2021, 17:54:13)  [GCC 9.3.0]
executable: /home/aperez/dev/sandbox/scikit-learn/venv/bin/python
   machine: Linux-5.13.0-1014-oem-x86_64-with-glibc2.29

Python dependencies:
          pip: 21.3
   setuptools: 56.0.0
      sklearn: 1.1.dev0
        numpy: 1.21.2
        scipy: 1.7.1
       Cython: 0.29.24
       pandas: None
   matplotlib: 3.4.3
       joblib: 1.1.0
threadpoolctl: 3.0.0

Built with OpenMP: True
@ogrisel
Copy link
Member
ogrisel commented Oct 18, 2021

Thanks for the report. Do you happen to know which specific test is causing the segfault?

For instance is the following enough to reproduce?

pytest -v sklearn/tests/test_common.py -k "check_classifiers_train and svc"

You can then refine the test name pattern passed to -k to find out the culprit.

@ogrisel
Copy link
Member
ogrisel commented Oct 18, 2021

For the record, I cannot reproduce locally with the same versions of numpy and scipy and our CI is green.

Which compiler version are you using? Assuming you are using the system's compiler on Linux, the following should do:

gcc --version

@aperezlebel
Copy link
Contributor Author

For instance is the following enough to reproduce?
pytest -v sklearn/tests/test_common.py -k "check_classifiers_train and svc"

Yes, it reproduces the same error:

sklearn/tests/test_common.py::test_estimators[LinearSVC()-check_classifiers_train] PASSED                                                           [ 11%]
sklearn/tests/test_common.py::test_estimators[LinearSVC()-check_classifiers_train(readonly_memmap=True)] PASSED                                     [ 22%]
sklearn/tests/test_common.py::test_estimators[LinearSVC()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)] PASSED                     [ 33%]
sklearn/tests/test_common.py::test_estimators[NuSVC()-check_classifiers_train] PASSED                                                               [ 44%]
sklearn/tests/test_common.py::test_estimators[NuSVC()-check_classifiers_train(readonly_memmap=True)] Fatal Python error: Segmentation fault

[... same traceback]

It seems to come from test_estimators[NuSVC()-check_classifiers_train(readonly_memmap=True)].

Which compiler version are you using?

gcc --version gives me:

gcc (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0

@jeremiedbb
Copy link
Member

I have the exact same version of gcc and I don't reproduce the failure locally

@ogrisel
Copy link
Member
ogrisel commented Oct 19, 2021

@alexrz can you please try to install clang / clang++ from the llvm project (either with apt install from ubuntu or using conda-forge) and rebuild scikit-learn with this this compiler using the following command:

CC="clang" CXX="clang++" LDSHARED="clang -shared" make clean inplace
pytest -v sklearn/tests/test_common.py -k "check_classifiers_train and svc"

@ogrisel ogrisel changed the title Segmentation fault when running test_common.py Segmentation fault when running test_common.py::test_estimators[NuSVC()-check_classifiers_train(readonly_memmap=True)] Oct 19, 2021
@aperezlebel
Copy link
Contributor Author

After running commands described in "Steps/Code to Reproduce", I ran:

sudo apt install clang
CC="clang" CXX="clang++" LDSHARED="clang -shared" make clean inplace
pytest -v sklearn/tests/test_common.py -k "check_classifiers_train and svc"

and got the same error on the same test.

@ogrisel
Copy link
Member
ogrisel commented Oct 19, 2021

This might be the same as #20430 and #21336.

Next step would be to try to reproduce with gdb and then output a post mortem backtrace.

@ogrisel
Copy link
Member
ogrisel commented Oct 19, 2021

For instance:

gdb -ex r --args python -m pytest -v sklearn/tests/test_common.py -k "check_classifiers_train and svc"

and then, type bt to get a backtrace of the C-level call stack at the time of the crash.

@aperezlebel
Copy link
Contributor Author
aperezlebel commented Oct 19, 2021

I got:

(gdb) bt
#0  0x00007fffdbe31c31 in ddot_k_PRESCOTT () from /home/aperez/dev/sandbox/test/scikit-learn/venv/lib/python3.8/site-packages/scipy/spatial/../../scipy.libs/libopenblasp-r0-085ca80a.3.9.so
#1  0x00007fffc893b39a in ?? () from /home/aperez/dev/sandbox/test/scikit-learn/venv/lib/python3.8/site-packages/scipy/linalg/cython_blas.cpython-38-x86_64-linux-gnu.so
#2  0x00007fffc89226e0 in ?? () from /home/aperez/dev/sandbox/test/scikit-learn/venv/lib/python3.8/site-packages/scipy/linalg/cython_blas.cpython-38-x86_64-linux-gnu.so
#3  0x00007fffbe547aca in __pyx_fuse_1__pyx_f_7sklearn_5utils_12_cython_blas__dot (__pyx_v_n=<optimized out>, __pyx_v_x=<optimized out>, __pyx_v_incx=<optimized out>, __pyx_v_y=<optimized out>, 
    __pyx_v_incy=<optimized out>) at sklearn/utils/_cython_blas.c:2861
#4  0x00007fffbe258327 in svm::Kernel::Kernel (this=0x7fffffff6030, l=<optimized out>, x_=<optimized out>, param=..., blas_functions=0x7fffffff64e0) at sklearn/svm/src/libsvm/svm.cpp:394
#5  0x00007fffbe25b394 in svm::SVC_Q::SVC_Q (blas_functions=0x7fffffff64e0, y_=0x555556ff0fd0 '\001' <repeats 100 times>, '\377' <repeats 100 times>..., param=..., prob=..., this=0x7fffffff6030)
    at sklearn/svm/src/libsvm/svm.cpp:1682
#6  svm::solve_nu_svc (blas_functions=0x7fffffff64e0, si=0x7fffffff6000, alpha=0x555557450160, param=0x7fffffff69a0, prob=0x7fffffff6360) at sklearn/svm/src/libsvm/svm.cpp:1682
#7  svm::svm_train_one (prob=0x7fffffff6360, param=0x7fffffff69a0, Cp=<optimized out>, Cn=<optimized out>, status=0x7fffffff64d4, blas_functions=0x7fffffff64e0)
    at sklearn/svm/src/libsvm/svm.cpp:1856
#8  0x00007fffbe264cde in svm_train (prob=0x7fffffff6340, prob@entry=0x7fffffff6500, param=param@entry=0x7fffffff69a0, status=status@entry=0x7fffffff64d4, 
    blas_functions=blas_functions@entry=0x7fffffff64e0) at sklearn/svm/src/libsvm/svm.cpp:2504
#9  0x00007fffbe23e921 in __pyx_pf_7sklearn_3svm_7_libsvm_fit (__pyx_v_X=__pyx_v_X@entry=0x7fffbb041db0, __pyx_v_Y=__pyx_v_Y@entry=0x7fffbb041c90, __pyx_v_svm_type=__pyx_v_svm_type@entry=1, 
    __pyx_v_kernel=__pyx_v_kernel@entry=0x7fffc3052730, __pyx_v_degree=__pyx_v_degree@entry=3, __pyx_v_gamma=__pyx_v_gamma@entry=0.53188777537536391, __pyx_v_coef0=__pyx_v_coef0@entry=0, 
    __pyx_v_tol=__pyx_v_tol@entry=0.001, __pyx_v_C=__pyx_v_C@entry=0, __pyx_v_nu=0.5, __pyx_v_epsilon=0, __pyx_v_class_weight=__pyx_v_class_weight@entry=0x7fffbb041f30, 
    __pyx_v_sample_weight=0x7fffbb041e10, __pyx_v_shrinking=1, __pyx_v_probability=0, __pyx_v_cache_size=200, __pyx_v_max_iter=-1, __pyx_v_random_seed=209652396, __pyx_self=<optimized out>)

@ogrisel
Copy link
Member
ogrisel commented Oct 19, 2021

OpenBLAS 0.3.9 seems very old.

Can you please include the output of:

python -m threadpoolctl -i sklearn

in the environment where you can reproduce the crash?

@aperezlebel
Copy link
Contributor Author
python -m threadpoolctl -i sklearn

[
  {
    "user_api": "openmp",
    "internal_api": "openmp",
    "prefix": "libgomp",
    "filepath": "/home/aperez/mambaforge/envs/xxx/lib/libgomp.so.1.0.0",
    "version": null,
    "num_threads": 8
  },
  {
    "user_api": "blas",
    "internal_api": "openblas",
    "prefix": "libopenblas",
    "filepath": "/home/aperez/dev/sandbox/test/scikit-learn/venv/lib/python3.8/site-packages/numpy.libs/libopenblasp-r0-2d23e62b.3.17.so",
    "version": "0.3.17",
    "threading_layer": "pthreads",
    "architecture": "SkylakeX",
    "num_threads": 8
  },
  {
    "user_api": "blas",
    "internal_api": "openblas",
    "prefix": "libopenblas",
    "filepath": "/home/aperez/dev/sandbox/test/scikit-learn/venv/lib/python3.8/site-packages/scipy.libs/libopenblasp-r0-085ca80a.3.9.so",
    "version": "0.3.9",
    "threading_layer": "pthreads",
    "architecture": "Prescott",
    "num_threads": 8
  }
]

@aperezlebel
Copy link
Contributor Author

When installing packages with condaforge, I don't get the error.

python -m threadpoolctl -i sklearn

[
  {
    "user_api": "openmp",
    "internal_api": "openmp",
    "prefix": "libgomp",
    "filepath": "/home/aperez/mambaforge/envs/scikit-learn/lib/libgomp.so.1.0.0",
    "version": null,
    "num_threads": 8
  },
  {
    "user_api": "blas",
    "internal_api": "openblas",
    "prefix": "libopenblas",
    "filepath": "/home/aperez/mambaforge/envs/scikit-learn/lib/libopenblasp-r0.3.18.so",
    "version": "0.3.18",
    "threading_layer": "pthreads",
    "architecture": "SkylakeX",
    "num_threads": 8
  }
]

@ogrisel
Copy link
Member
ogrisel commented Oct 19, 2021

It's possible that openblas 0.3.9 on CPU architectures detected as Prescott has a bug with readonly memory buffer that causes the segfault.

@ogrisel
Copy link
Member
ogrisel commented Oct 19, 2021

@AlexPrz maybe you can try to do:

OPENBLAS_CORETYPE="Haswell" pytest -v sklearn/tests/test_common.py -k "check_classifiers_train and svc"

and also:

OPENBLAS_CORETYPE="Haswell" python -m threadpoolctl -i sklearn

in the venv that has the problem.

@aperezlebel
Copy link
Contributor Author

When running:

OPENBLAS_CORETYPE="Haswell" pytest -v sklearn/tests/test_common.py -k "check_classifiers_train and svc"

in the venv that has the problem, I don't get the error anymore.

And OPENBLAS_CORETYPE="Haswell" python -m threadpoolctl -i sklearn returns:

[
  {
    "user_api": "openmp",
    "internal_api": "openmp",
    "prefix": "libgomp",
    "filepath": "/home/aperez/mambaforge/envs/scikit-learn/lib/libgomp.so.1.0.0",
    "version": null,
    "num_threads": 8
  },
  {
    "user_api": "blas",
    "internal_api": "openblas",
    "prefix": "libopenblas",
    "filepath": "/home/aperez/dev/sandbox/test/scikit-learn/venv/lib/python3.8/site-packages/numpy.libs/libopenblasp-r0-2d23e62b.3.17.so",
    "version": "0.3.17",
    "threading_layer": "pthreads",
    "architecture": "Haswell",
    "num_threads": 8
  },
  {
    "user_api": "blas",
    "internal_api": "openblas",
    "prefix": "libopenblas",
    "filepath": "/home/aperez/dev/sandbox/test/scikit-learn/venv/lib/python3.8/site-packages/scipy.libs/libopenblasp-r0-085ca80a.3.9.so",
    "version": "0.3.9",
    "threading_layer": "pthreads",
    "architecture": "Haswell",
    "num_threads": 8
  }
]

@jeremiedbb
Copy link
Member

On my side, I confirm that forcing the Prescott architecture triggers the segfault.

@ogrisel
Copy link
Member
ogrisel commented Oct 19, 2021

I think the only fix is to wait for scipy to upgrade it's dependency to openblas.

@ogrisel
Copy link
Member
ogrisel commented Oct 19, 2021

I reported the bug upstream in scipy.

The workaround, in the mean time, is to install scipy from conda-forge instead of pypi.org.

conda create -n cf-env -c conda-forge numpy scipy cython
conda activate cf-env
pip install --no-build-isolation --editable .

@amueller
Copy link
Member

So should this no longer be a blocker?

@jjerphan
Copy link
Member
jjerphan commented Nov 16, 2021

scipy/scipy#14316 seems to have fixed this issue indirectly by upgrading OpenBLAS for the PyPI distribution of scipy:

/tmp/scikit-learn   ± ● main $ source venv/bin/activate
/tmp/scikit-learn   ± ● main $ where python            
/tmp/scikit-learn/venv/bin/python
/usr/bin/python
/tmp/scikit-learn   ± ● main $ python -m threadpoolctl -i sklearn
[
  {
    "user_api": "openmp",
    "internal_api": "openmp",
    "prefix": "libomp",
    "filepath": "/home/jjerphan/.local/share/miniconda3/lib/libomp.so",
    "version": null,
    "num_threads": 8
  },
  {
    "user_api": "blas",
    "internal_api": "openblas",
    "prefix": "libopenblas",
    "filepath": "/tmp/scikit-learn/venv/lib/python3.9/site-packages/numpy.libs/libopenblasp-r0-2d23e62b.3.17.so",
    "version": "0.3.17",
    "threading_layer": "pthreads",
    "architecture": "SkylakeX",
    "num_threads": 8
  },
  {
    "user_api": "blas",
    "internal_api": "openblas",
    "prefix": "libopenblas",
    "filepath": "/tmp/scikit-learn/venv/lib/python3.9/site-packages/scipy.libs/libopenblasp-r0-8b9e111f.3.17.so",
    "version": "0.3.17",
    "threading_layer": "pthreads",
    "architecture": "SkylakeX",
    "num_threads": 8
  }
]

@AlexPrz: can you confirm?

@aperezlebel
Copy link
Contributor Author

I do confirm that I don't get the segfault anymore with scipy 1.7.2 whereas I get it with scipy 1.7.1.

@ogrisel
Copy link
Member
ogrisel commented Nov 18, 2021

For information we observed this crash on the CI on the unrelated PR #21697. The CI entry with the crash is also using the old version of openblas: 0.3.13 that detects the Prescott kernel.

threadpoolctl info:
       filepath: /usr/share/miniconda/envs/testvenv/lib/libgomp.so.1.0.0
         prefix: libgomp
       user_api: openmp
   internal_api: openmp
        version: None
    num_threads: 2

       filepath: /usr/share/miniconda/envs/testvenv/lib/libopenblasp-r0.3.13.so
         prefix: libopenblas
       user_api: blas
   internal_api: openblas
        version: 0.3.13
    num_threads: 2
threading_layer: pthreads
   architecture: Prescott

We should probably update our 6D40 CI tests to XFAIL or skip those tests on the Prescott architecture.

@jjerphan
Copy link
Member
jjerphan commented Nov 18, 2021

As discussed with @glemaitre, I am taking this as I already did some openblas xfail fixtures for faulty tests.

jjerphan added a commit to jjerphan/scikit-learn that referenced this issue Nov 18, 2021
Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>
jjerphan added a commit that referenced this issue Nov 18, 2021
Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>
jjerphan added a commit to jjerphan/scikit-learn that referenced this issue Nov 18, 2021
Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>
adrinjalali added a commit that referenced this issue Nov 18, 2021
* TST XFAIL test when unstable openblas configuration

* Adapt versions parsing

Co-authored-By: Adrin Jalali <adrin.jalali@gmail.com>

* DOC Prefer ifskip and reference #21361

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

* Fix Julien's scheduler incorrect dispatch

* Simplify

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

* Do not remove blank line

* fixup! Do not remove blank line

* Retrigger CI

* Prudently assume Prescott might be the architecture if it is unknown

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

Co-authored-by: Adrin Jalali <adrin.jalali@gmail.com>
Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>
glemaitre pushed a commit to glemaitre/scikit-learn that referenced this issue Nov 22, 2021
…rn#21702)

* TST XFAIL test when unstable openblas configuration

* Adapt versions parsing

Co-authored-By: Adrin Jalali <adrin.jalali@gmail.com>

* DOC Prefer ifskip and reference scikit-learn#21361

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

* Fix Julien's scheduler incorrect dispatch

* Simplify

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

* Do not remove blank line

* fixup! Do not remove blank line

* Retrigger CI

* Prudently assume Prescott might be the architecture if it is unknown

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

Co-authored-by: Adrin Jalali <adrin.jalali@gmail.com>
Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>
glemaitre pushed a commit to glemaitre/scikit-learn that referenced this issue Nov 29, 2021
…rn#21702)

* TST XFAIL test when unstable openblas configuration

* Adapt versions parsing

Co-authored-By: Adrin Jalali <adrin.jalali@gmail.com>

* DOC Prefer ifskip and reference scikit-learn#21361

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

* Fix Julien's scheduler incorrect dispatch

* Simplify

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

* Do not remove blank line

* fixup! Do not remove blank line

* Retrigger CI

* Prudently assume Prescott might be the architecture if it is unknown

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

Co-authored-by: Adrin Jalali <adrin.jalali@gmail.com>
Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>
samronsin pushed a commit to samronsin/scikit-learn that referenced this issue Nov 30, 2021
…rn#21702)

* TST XFAIL test when unstable openblas configuration

* Adapt versions parsing

Co-authored-By: Adrin Jalali <adrin.jalali@gmail.com>

* DOC Prefer ifskip and reference scikit-learn#21361

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

* Fix Julien's scheduler incorrect dispatch

* Simplify

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

* Do not remove blank line

* fixup! Do not remove blank line

* Retrigger CI

* Prudently assume Prescott might be the architecture if it is unknown

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

Co-authored-by: Adrin Jalali <adrin.jalali@gmail.com>
Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>
glemaitre pushed a commit to glemaitre/scikit-learn that referenced this issue Dec 24, 2021
…rn#21702)

* TST XFAIL test when unstable openblas configuration

* Adapt versions parsing

Co-authored-By: Adrin Jalali <adrin.jalali@gmail.com>

* DOC Prefer ifskip and reference scikit-learn#21361

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

* Fix Julien's scheduler incorrect dispatch

* Simplify

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

* Do not remove blank line

* fixup! Do not remove blank line

* Retrigger CI

* Prudently assume Prescott might be the architecture if it is unknown

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

Co-authored-by: Adrin Jalali <adrin.jalali@gmail.com>
Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>
glemaitre pushed a commit that referenced this issue Dec 25, 2021
* TST XFAIL test when unstable openblas configuration

* Adapt versions parsing

Co-authored-By: Adrin Jalali <adrin.jalali@gmail.com>

* DOC Prefer ifskip and reference #21361

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

* Fix Julien's scheduler incorrect dispatch

* Simplify

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

* Do not remove blank line

* fixup! Do not remove blank line

* Retrigger CI

* Prudently assume Prescott might be the architecture if it is unknown

Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>

Co-authored-by: Adrin Jalali <adrin.jalali@gmail.com>
Co-authored-by: Olivier Grisel <olivier.grisel@ensta.org>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging a pull request may close this issue.

5 participants
0