8000 ValueError in SimpleImputer for string input with strategy='most_frequent'/'constant' · Issue #17525 · scikit-learn/scikit-learn · GitHub
[go: up one dir, main page]

Skip to content
ValueError in SimpleImputer for string input with strategy='most_frequent'/'constant' #17525
Closed
@yagi-3

Description

@yagi-3

Describe the bug

  • List of strings raise ValueError in SimpleImputer with strategy='most_frequent' (also 'constant')

Steps/Code to Reproduce

import numpy as np
from sklearn.impute import SimpleImputer


X = [['a', 'b', 'c'], ['d', 'e', np.nan]]

imp_mf = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
transformed_mf = imp_mf.fit_transform(X)
print(transformed_mf)

Expected Results

[['a' 'b' 'c']
 ['d' 'e' 'c']]

Actual Results

--------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-10-6cee172813bf> in <module>()
      6 
      7 imp_mf = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
----> 8 transformed_mf = imp_mf.fit_transform(X)
      9 print(transformed_mf)

2 frames
/content/scikit-learn/sklearn/impute/_base.py in _validate_input(self, X, in_fit)
    258                              "categorical data represented either as an array "
    259                              "with integer dtype or an array of string values "
--> 260                              "with an object dtype.".format(X.dtype))
    261 
    262         return X

ValueError: SimpleImputer does not support data with dtype <U3. Please provide either a numeric array (with a floating point or integer dtype) or categorical data represented either as an array with integer dtype or an array of string values with an object dtype..

Versions

System:
    python: 3.6.9 (default, Apr 18 2020, 01:56:04)  [GCC 8.4.0]
executable: /usr/bin/python3
   machine: Linux-4.19.104+-x86_64-with-Ubuntu-18.04-bionic

Python dependencies:
          pip: 19.3.1
   setuptools: 47.1.1
      sklearn: 0.23.1
        numpy: 1.18.4
        scipy: 1.4.1
       Cython: 0.29.19
       pandas: 1.0.4
   matplotlib: 3.2.1
       joblib: 0.15.1
threadpoolctl: 2.1.0

Built with OpenMP: True

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      0