8000 test_omp_cv fails with MKL and AVX-512 · Issue #12676 · scikit-learn/scikit-learn · GitHub
[go: up one dir, main page]

8000
Skip to content
test_omp_cv fails with MKL and AVX-512 #12676
Closed
@h6197627

Description

@h6197627

In newly released scikit-learn 0.20.1 (and actually in 0.20.0) test_omp_cv case fails during running test suite. Any help appreciated!

_______________________________ test_omp_cv _______________________________

    def test_omp_cv():
        y_ = y[:, 0]
        gamma_ = gamma[:, 0]
        ompcv = OrthogonalMatchingPursuitCV(normalize=True, fit_intercept=False,
                                            max_iter=10, cv=5)
        ompcv.fit(X, y_)
>       assert_equal(ompcv.n_nonzero_coefs_, n_nonzero_coefs)

/usr/local/lib/python3.6/dist-packages/scikit_learn-0.20.1-py3.6-linux-x86_64.egg/sklearn/linear_model/tests/test_omp.py:209: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/usr/lib/python3.6/unittest/case.py:829: in assertEqual
    assertion_func(first, second, msg=msg)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = <sklearn.utils._unittest_backport.TestCase testMethod=__init__>, first = 6, second = 5, msg = '6 != 5'

    def _baseAssertEqual(self, first, second, msg=None):
        """The default assertEqual implementation, not type specific."""
        if not first == second:
            standardMsg = '%s != %s' % _common_shorten_repr(first, second)
            msg = self._formatMessage(msg, standardMsg)
>           raise self.failureException(msg)
E           AssertionError: 6 != 5

/usr/lib/python3.6/unittest/case.py:822: AssertionError

Versions

System:
python: 3.6.7 (default, Oct 22 2018, 11:32:17) [GCC 8.2.0]
executable: /usr/bin/python3
machine: Linux-4.15.0-39-generic-x86_64-with-Ubuntu-18.04-bionic

BLAS:
macros: SCIPY_MKL_H=None, HAVE_CBLAS=None
lib_dirs: /opt/intel/mkl/lib/intel64
cblas_libs: mkl_rt, pthread

Python deps:
pip: 18.1
setuptools: 40.6.2
sklearn: 0.20.1
numpy: 1.15.4
scipy: 1.1.0
Cython: 0.29
pandas: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      0