|
| 1 | +""" |
| 2 | +============================================= |
| 3 | +Generating MNAR / MCAR missing_values in data |
| 4 | +============================================= |
| 5 | +
|
| 6 | +This example illustrates how the :func:`sklearn.datasets.value_dropper` can |
| 7 | +be used to generate missing values that are correlated/non-correlated |
| 8 | +with the target. |
| 9 | +
|
| 10 | +This function provisions generating missing values incrementally so that an |
| 11 | +exact fraction of missing values can be introduced for benchmarking |
| 12 | +missing-value handling strategies and evaluating the performance of such |
| 13 | +strategies with respect to the type and extent of missingness in data. |
| 14 | +
|
| 15 | +MNAR or Missing Not At Random refers to the case when the missingness in the |
| 16 | +data is correlated with the target value(s). |
| 17 | +
|
| 18 | +MCAR or Missing Completely At Random refers to the case when the missingness |
| 19 | +in the data is completely random and does not correlate with the target |
| 20 | +value(s). |
| 21 | +""" |
| 22 | +# Author: Raghav RV <rvraghav93@gmail.com> |
| 23 | +# |
| 24 | +# License: BSD 3 clause |
| 25 | + |
| 26 | +from __future__ import print_function |
| 27 | +from sklearn.datasets import drop_values |
| 28 | +import numpy as np |
| 29 | + |
| 30 | +print(__doc__) |
| 31 | + |
| 32 | + |
| 33 | +X = [[0, 1, 2], |
| 34 | + [3, 4, 5], |
| 35 | + [6, 7, 8], |
| 36 | + [9, 0, 1], |
| 37 | + [2, 3, 4], |
| 38 | + [8, 9, 8], |
| 39 | + [1, 0, 5], |
| 40 | + [7, 8, 9], |
| 41 | + [5, 4, 3], |
| 42 | + [2, 1, 1], |
| 43 | + [3, 4, 5], |
| 44 | + [2, 3, 4], |
| 45 | + [8, 9, 8], |
| 46 | + [1, 0, 5], |
| 47 | + [7, 8, 9],] |
| 48 | +y = [0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2] |
| 49 | + |
| 50 | +# Drop 10% of values across all features for samples |
| 51 | +# where the target class label is randomly chosen |
| 52 | + |
| 53 | +X, y, mm, labels = drop_values(X, y, |
| 54 | + drop_fraction=0.1, |
| 55 | + return_missing_mask=True, |
| 56 | + return_labels=True, |
| 57 | + copy=False, |
| 58 | + verbose=True, |
| 59 | + random_state=42) |
| 60 | + |
| 61 | +print("After dropping 10%% of values when class label(s) are %r\n" % labels) |
| 62 | +print("y \t X") |
| 63 | +print("------------------------") |
| 64 | +for i in range(y.shape[0]): |
| 65 | + print(y[i], '\t', X[i]) |
| 66 | + |
| 67 | + |
| 68 | +print("\n\n") |
| 69 | +# Drop 10% of values across all features for samples |
| 70 | +# where the target class label is same as what was chosen before |
| 71 | + |
| 72 | +# NOTE We can now pass the missing mask from the previous step |
| 73 | +# to avoid it getting recomputed. |
| 74 | + |
| 75 | +X, y, mm = drop_values(X, y, missing_mask=mm, |
| 76 | + drop_fraction=0.2, |
| 77 | + labels=labels, |
| 78 | + return_labels=False, |
| 79 | + return_missing_mask=True, |
| 80 | + copy=False, |
| 81 | + verbose=True, |
| 82 | + random_state=42) |
| 83 | + |
| 84 | +print("After dropping another 10%% of values when class label(s) are %r\n" % labels) |
| 85 | +print("y \t X") |
| 86 | +print("------------------------") |
| 87 | +for i in range(y.shape[0]): |
| 88 | + print(y[i], '\t', X[i]) |
| 89 | + |
| 90 | +print('\n\n') |
| 91 | + |
| 92 | +# Now drop another 10%, but this time from class 0 |
| 93 | +# This time let us not modify X inplace and instead return the missing mask and |
| 94 | +# manually set the missing_values |
| 95 | + |
| 96 | +# This time we are not passing the previous missing_mask and allowing it to get computed |
| 97 | +# on the fly |
| 98 | + |
| 99 | +# Let us store the old missing mask |
| 100 | +mm_old = mm.copy() |
| 101 | + |
| 102 | +X, y, mm = drop_values(X, y, |
| 103 | + drop_fraction=0.3, |
| 104 | + # Explicitly specify we want missing values correlated to class 0 |
| 105 | + labels=[1, ], |
| 106 | + return_labels=False, |
| 107 | + return_missing_mask=True, |
| 108 | + missing_mask_only=True, |
| 109 | + copy=False, |
| 110 | + verbose=True, |
| 111 | + random_state=42) |
| 112 | + |
| 113 | +print("NOTE that the missing_values are set. Only the missing mask is updated...") |
| 114 | +print("y \t missing_mask") |
| 115 | +print("------------------------") |
| 116 | +for i in range(y.shape[0]): |
| 117 | + print(y[i], '\t', mm[i]) |
| 118 | + |
| 119 | +print('\n\n') |
| 120 | +print('\nThe X is not modified') |
| 121 | +print("y \t X") |
| 122 | +pr
9E12
int("------------------------") |
| 123 | +for i in range(y.shape[0]): |
| 124 | + print(y[i], '\t', X[i]) |
| 125 | + |
| 126 | +print('\n\n') |
| 127 | + |
| 128 | + |
| 129 | +# Manually update the missing values from the mask |
| 130 | +# only for the newly missing values |
| 131 | + |
| 132 | +mm_new = mm_old ^ mm |
| 133 | +X[mm_new] = np.nan |
| 134 | + |
| 135 | +print("After manually updating the new missing values") |
| 136 | +print("y \t X") |
| 137 | +print("------------------------") |
| 138 | +for i in range(y.shape[0]): |
| 139 | + print(y[i], '\t', X[i]) |
| 140 | + |
| 141 | +print('\n\n') |
| 142 | + |
| 143 | +# Now let us add additional 10% of random missing values |
| 144 | + |
| 145 | +X, y = drop_values(X, y, |
| 146 | + drop_fraction=0.4, |
| 147 | + # Explicitly specify we want missing values correlated to class 0 |
| 148 | + label_correlation=0, |
| 149 | + copy=False, |
| 150 | + verbose=True, |
| 151 | + random_state=42) |
| 152 | + |
| 153 | +print("y \t X") |
| 154 | +print("------------------------") |
| 155 | +for i in range(y.shape[0]): |
| 156 | + print(y[i], '\t', X[i]) |
0 commit comments