@@ -141,7 +141,7 @@ def lobpcg(
141
141
retLambdaHistory = False ,
142
142
retResidualNormsHistory = False ,
143
143
):
144
- """Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)
144
+ """Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG).
145
145
146
146
LOBPCG is a preconditioned eigensolver for large symmetric positive
147
147
definite (SPD) generalized eigenproblems.
@@ -161,7 +161,7 @@ def lobpcg(
161
161
Preconditioner to `A`; by default ``M = Identity``.
162
162
`M` should approximate the inverse of `A`.
163
163
Y : ndarray, float32 or float64, optional
164
- n-by-sizeY matrix of constraints (non-sparse), sizeY < n
164
+ An n-by-sizeY matrix of constraints (non-sparse), sizeY < n.
165
165
The iterations will be performed in the B-orthogonal complement
166
166
of the column-space of Y. Y must be full rank.
167
167
tol : scalar, optional
@@ -181,7 +181,7 @@ def lobpcg(
181
181
Returns
182
182
-------
183
183
w : ndarray
184
- Array of ``k`` eigenvalues
184
+ Array of ``k`` eigenvalues.
185
185
v : ndarray
186
186
An array of ``k`` eigenvectors. `v` has the same shape as `X`.
187
187
lambdas : list of ndarray, optional
@@ -240,7 +240,6 @@ def lobpcg(
240
240
241
241
Examples
242
242
--------
243
-
244
243
Solve ``A x = lambda x`` with constraints and preconditioning.
245
244
246
245
>>> import numpy as np
@@ -293,7 +292,6 @@ def lobpcg(
293
292
294
293
Note that the vectors passed in Y are the eigenvectors of the 3 smallest
295
294
eigenvalues. The results returned are orthogonal to those.
296
-
297
295
"""
298
296
blockVectorX = X
299
297
blockVectorY = Y
0 commit comments