|
31 | 31 | from sklearn import ensemble
|
32 | 32 | from sklearn import datasets
|
33 | 33 |
|
| 34 | +from sklearn.model_selection import train_test_split |
34 | 35 |
|
35 |
| -X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) |
36 |
| -X = X.astype(np.float32) |
| 36 | +X, y = datasets.make_hastie_10_2(n_samples=4000, random_state=1) |
37 | 37 |
|
38 | 38 | # map labels from {-1, 1} to {0, 1}
|
39 | 39 | labels, y = np.unique(y, return_inverse=True)
|
40 | 40 |
|
41 |
| -X_train, X_test = X[:2000], X[2000:] |
42 |
| -y_train, y_test = y[:2000], y[2000:] |
| 41 | +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.8, random_state=0) |
43 | 42 |
|
44 | 43 | original_params = {
|
45 |
| - "n_estimators": 1000, |
| 44 | + "n_estimators": 400, |
46 | 45 | "max_leaf_nodes": 4,
|
47 | 46 | "max_depth": None,
|
48 | 47 | "random_state": 2,
|
|
53 | 52 |
|
54 | 53 | for label, color, setting in [
|
55 | 54 | ("No shrinkage", "orange", {"learning_rate": 1.0, "subsample": 1.0}),
|
56 |
| - ("learning_rate=0.1", "turquoise", {"learning_rate": 0.1, "subsample": 1.0}), |
| 55 | + ("learning_rate=0.2", "turquoise", {"learning_rate": 0.2, "subsample": 1.0}), |
57 | 56 | ("subsample=0.5", "blue", {"learning_rate": 1.0, "subsample": 0.5}),
|
58 | 57 | (
|
59 |
| - "learning_rate=0.1, subsample=0.5", |
| 58 | + "learning_rate=0.2, subsample=0.5", |
60 | 59 | "gray",
|
61 |
| - {"learning_rate": 0.1, "subsample": 0.5}, |
| 60 | + {"learning_rate": 0.2, "subsample": 0.5}, |
62 | 61 | ),
|
63 | 62 | (
|
64 |
| - "learning_rate=0.1, max_features=2", |
| 63 | + "learning_rate=0.2, max_features=2", |
65 | 64 | "magenta",
|
66 |
| - {"learning_rate": 0.1, "max_features": 2}, |
| 65 | + {"learning_rate": 0.2, "max_features": 2}, |
67 | 66 | ),
|
68 | 67 | ]:
|
69 | 68 | params = dict(original_params)
|
|
0 commit comments