8000 DOC Format in LogisticRegression/LogisticRegressionCV · scikit-learn/scikit-learn@eb453b6 · GitHub
[go: up one dir, main page]

Skip to content

Commit eb453b6

Browse files
committed
DOC Format in LogisticRegression/LogisticRegressionCV
1 parent e500447 commit eb453b6

File tree

1 file changed

+6
-4
lines changed

1 file changed

+6
-4
lines changed

sklearn/linear_model/logistic.py

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1045,8 +1045,9 @@ class LogisticRegression(BaseEstimator, LinearClassifierMixin,
10451045
instance used by `np.random`. Used when ``solver`` == 'sag' or
10461046
'liblinear'.
10471047
1048-
solver : str, {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'},
1049-
default: 'liblinear'
1048+
solver : str, {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, \
1049+
default: 'liblinear'
1050+
10501051
Algorithm to use in the optimization problem.
10511052
10521053
- For small datasets, 'liblinear' is a good choice, whereas 'sag' and
@@ -1436,8 +1437,9 @@ class LogisticRegressionCV(LogisticRegression, BaseEstimator,
14361437
that can be used, look at :mod:`sklearn.metrics`. The
14371438
default scoring option used is 'accuracy'.
14381439
1439-
solver : str, {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'},
1440-
default: 'lbfgs'
1440+
solver : str, {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, \
1441+
default: 'lbfgs'
1442+
14411443
Algorithm to use in the optimization problem.
14421444
14431445
- For small datasets, 'liblinear' is a good choice, whereas 'sag' and

0 commit comments

Comments
 (0)
0