@@ -1045,8 +1045,9 @@ class LogisticRegression(BaseEstimator, LinearClassifierMixin,
1045
1045
instance used by `np.random`. Used when ``solver`` == 'sag' or
1046
1046
'liblinear'.
1047
1047
1048
- solver : str, {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'},
1049
- default: 'liblinear'
1048
+ solver : str, {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, \
1049
+ default: 'liblinear'
1050
+
1050
1051
Algorithm to use in the optimization problem.
1051
1052
1052
1053
- For small datasets, 'liblinear' is a good choice, whereas 'sag' and
@@ -1436,8 +1437,9 @@ class LogisticRegressionCV(LogisticRegression, BaseEstimator,
1436
1437
that can be used, look at :mod:`sklearn.metrics`. The
1437
1438
default scoring option used is 'accuracy'.
1438
1439
1439
- solver : str, {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'},
1440
- default: 'lbfgs'
1440
+ solver : str, {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, \
1441
+ default: 'lbfgs'
1442
+
1441
1443
Algorithm to use in the optimization problem.
1442
1444
1443
1445
- For small datasets, 'liblinear' is a good choice, whereas 'sag' and
0 commit comments