8000 Merge remote-tracking branch 'upstream/master' into labelencoder-sets · scikit-learn/scikit-learn@ea189ce · GitHub
[go: up one dir, main page]

Skip to content

Commit ea189ce

Browse files
Merge remote-tracking branch 'upstream/master' into labelencoder-sets
2 parents 662da67 + a320c08 commit ea189ce

File tree

100 files changed

+2225
-11054
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

100 files changed

+2225
-11054
lines changed

.gitignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -54,6 +54,7 @@ benchmarks/bench_covertype_data/
5454
*.prefs
5555
.pydevproject
5656
.idea
57+
.vscode
5758

5859
*.c
5960
*.cpp

.travis.yml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -56,8 +56,8 @@ matrix:
5656
# installed from their CI wheels in a virtualenv with the Python
5757
# interpreter provided by travis.
5858
- python: 3.6
59-
env: DISTRIB="scipy-dev-wheels"
60-
if: type = cron
59+
env: DISTRIB="scipy-dev"
60+
if: type = cron OR commit_message ~ /\[scipy-dev\]/
6161

6262
install: source build_tools/travis/install.sh
6363
script: bash build_tools/travis/test_script.sh

benchmarks/bench_plot_incremental_pca.py

Lines changed: 4 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@
1313
from collections import defaultdict
1414
import matplotlib.pyplot as plt
1515
from sklearn.datasets import fetch_lfw_people
16-
from sklearn.decomposition import IncrementalPCA, RandomizedPCA, PCA
16+
from sklearn.decomposition import IncrementalPCA, PCA
1717

1818

1919
def plot_results(X, y, label):
@@ -37,7 +37,6 @@ def plot_feature_times(all_times, batch_size, all_components, data):
3737
plot_results(all_components, all_times['pca'], label="PCA")
3838
plot_results(all_components, all_times['ipca'],
3939
label="IncrementalPCA, bsize=%i" % batch_size)
40-
plot_results(all_components, all_times['rpca'], label="RandomizedPCA")
4140
plt.legend(loc="upper left")
4241
plt.suptitle("Algorithm runtime vs. n_components\n \
4342
LFW, size %i x %i" % data.shape)
@@ -50,7 +49,6 @@ def plot_feature_errors(all_errors, batch_size, all_components, data):
5049
plot_results(all_components, all_errors['pca'], label="PCA")
5150
plot_results(all_components, all_errors['ipca'],
5251
label="IncrementalPCA, bsize=%i" % batch_size)
53-
plot_results(all_components, all_errors['rpca'], label="RandomizedPCA")
5452
plt.legend(loc="lower left")
5553
plt.suptitle("Algorithm error vs. n_components\n"
5654
"LFW, size %i x %i" % data.shape)
@@ -61,7 +59,6 @@ def plot_feature_errors(all_errors, batch_size, all_components, data):
6159
def plot_batch_times(all_times, n_features, all_batch_sizes, data):
6260
plt.figure()
6361
plot_results(all_batch_sizes, all_times['pca'], label="PCA")
64-
plot_results(all_batch_sizes, all_times['rpca'], label="RandomizedPCA")
6562
plot_results(all_batch_sizes, all_times['ipca'], label="IncrementalPCA")
6663
plt.legend(loc="lower left")
6764
plt.suptitle("Algorithm runtime vs. batch_size for n_components %i\n \
@@ -92,11 +89,9 @@ def fixed_batch_size_comparison(data):
9289
all_errors = defaultdict(list)
9390
for n_components in all_features:
9491
pca = PCA(n_components=n_components)
95-
rpca = RandomizedPCA(n_components=n_components, random_state=1999)
9692
ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size)
9793
results_dict = {k: benchmark(est, data) for k, est in [('pca', pca),
98-
('ipca', ipca),
99-
('rpca', rpca)]}
94+
('ipca', ipca)]}
10095

10196
for k in sorted(results_dict.keys()):
10297
all_times[k].append(results_dict[k]['time'])
@@ -116,7 +111,8 @@ def variable_batch_size_comparison(data):
116111
all_times = defaultdict(list)
117112
all_errors = defaultdict(list)
118113
pca = PCA(n_components=n_components)
119-
rpca = RandomizedPCA(n_components=n_components, random_state=1999)
114+
rpca = PCA(n_components=n_components, svd_solver='randomized',
115+
random_state=1999)
120116
results_dict = {k: benchmark(est, data) for k, est in [('pca', pca),
121117
('rpca', rpca)]}
122118

@@ -138,8 +134,6 @@ def variable_batch_size_comparison(data):
138134
all_errors['ipca'].append(results_dict['ipca']['error'])
139135

140136
plot_batch_times(all_times, n_components, batch_sizes, data)
141-
# RandomizedPCA error is always worse (approx 100x) than other PCA
142-
# tests
143137
plot_batch_errors(all_errors, n_components, batch_sizes, data)
144138

145139
faces = fetch_lfw_people(resize=.2, min_faces_per_person=5)

build_tools/travis/install.sh

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,7 @@ elif [[ "$DISTRIB" == "ubuntu" ]]; then
7878
source testvenv/bin/activate
7979
pip install pytest pytest-cov cython==$CYTHON_VERSION
8080

81-
elif [[ "$DISTRIB" == "scipy-dev-wheels" ]]; then
81+
elif [[ "$DISTRIB" == "scipy-dev" ]]; then
8282
# Set up our own virtualenv environment to avoid travis' numpy.
8383
# This venv points to the python interpreter of the travis build
8484
# matrix.

0 commit comments

Comments
 (0)
0