@@ -305,10 +305,10 @@ def _fit(self, X):
305
305
self .row_labels_ = labels [:n_rows ]
306
306
self .column_labels_ = labels [n_rows :]
307
307
308
- self .rows_ = np .vstack (self .row_labels_ == c
309
- for c in range (self .n_clusters ))
310
- self .columns_ = np .vstack (self .column_labels_ == c
311
- for c in range (self .n_clusters ))
308
+ self .rows_ = np .vstack ([ self .row_labels_ == c
309
+ for c in range (self .n_clusters )] )
310
+ self .columns_ = np .vstack ([ self .column_labels_ == c
311
+ for c in range (self .n_clusters )] )
312
312
313
313
314
314
class SpectralBiclustering (BaseSpectral ):
@@ -504,12 +504,12 @@ def _fit(self, X):
504
504
self .column_labels_ = self ._project_and_cluster (X .T , best_ut .T ,
505
505
n_col_clusters )
506
506
507
- self .rows_ = np .vstack (self .row_labels_ == label
508
- for label in range (n_row_clusters )
509
- for _ in range (n_col_clusters ))
510
- self .columns_ = np .vstack (self .column_labels_ == label
511
- for _ in range (n_row_clusters )
512
- for label in range (n_col_clusters ))
507
+ self .rows_ = np .vstack ([ self .row_labels_ == label
508
+ for label in range (n_row_clusters )
509
+ for _ in range (n_col_clusters )] )
510
+ self .columns_ = np .vstack ([ self .column_labels_ == label
511
+ for _ in range (n_row_clusters )
512
+ for label in range (n_col_clusters )] )
513
513
514
514
def _fit_best_piecewise (self , vectors , n_best , n_clusters ):
515
515
"""Find the ``n_best`` vectors that are best approximated by piecewise
0 commit comments