8000 DOC Version added and changed labels added for v0.18 (#wimlds) (#16222) · scikit-learn/scikit-learn@dbc3593 · GitHub
[go: up one dir, main page]

Skip to content
10000

Commit dbc3593

Browse files
brigitteungerhhnnhhBrigitte@home
authored
DOC Version added and changed labels added for v0.18 (#wimlds) (#16222)
* Versionlabels added to v0.18 (#wimlds) * documentation issues: label changed and added for version 0.18 * fix intends and shorten description Co-authored-by: Hannah <32333241+hhnnhh@users.noreply.github.com> Co-authored-by: Brigitte@home <unger@nue.tu-berlin.de>
1 parent 964c830 commit dbc3593

File tree

11 files changed

+36
-0
lines changed

11 files changed

+36
-0
lines changed

sklearn/cluster/_kmeans.py

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -834,6 +834,9 @@ class KMeans(TransformerMixin, ClusterMixin, BaseEstimator):
834834
For now "auto" (kept for backward compatibiliy) chooses "elkan" but it
835835
might change in the future for a better heuristic.
836836
837+
.. versionchanged:: 0.18
838+
Added Elkan algorithm
839+
837840
Attributes
838841
----------
839842
cluster_centers_ : ndarray of shape (n_clusters, n_features)

sklearn/ensemble/_voting.py

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -141,6 +141,8 @@ class VotingClassifier(ClassifierMixin, _BaseVoting):
141141
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
142142
for more details.
143143
144+
.. versionadded:: 0.18
145+
144146
flatten_transform : bool, default=True
145147
Affects shape of transform output only when voting='soft'
146148
If voting='soft' and flatten_transform=True, transform method returns
@@ -232,6 +234,8 @@ def fit(self, X, y, sample_weight=None):
232234
Note that this is supported only if all underlying estimators
233235
support sample weights.
234236
237+
.. versionadded:: 0.18
238+
235239
Returns
236240
-------
237241
self : object

sklearn/feature_selection/_rfe.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -410,6 +410,8 @@ class RFECV(RFE):
410410
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
411411
for more details.
412412
413+
.. versionadded:: 0.18
414+
413415
Attributes
414416
----------
415417
n_features_ : int

sklearn/feature_selection/_univariate_selection.py

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -384,6 +384,8 @@ class SelectPercentile(_BaseFilter):
384384
Default is f_classif (see below "See also"). The default function only
385385
works with classification tasks.
386386
387+
.. versionadded:: 0.18
388+
387389
percentile : int, optional, default=10
388390
Percent of features to keep.
389391
@@ -467,6 +469,8 @@ class SelectKBest(_BaseFilter):
467469
Default is f_classif (see below "See also"). The default function only
468470
works with classification tasks.
469471
472+
.. versionadded:: 0.18
473+
470474
k : int or "all", optional, default=10
471475
Number of top features to select.
472476
The "all" option bypasses selection, for use in a parameter search.

sklearn/linear_model/_ransac.py

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -150,6 +150,8 @@ class RANSACRegressor(MetaEstimatorMixin, RegressorMixin,
150150
If the loss on a sample is greater than the ``residual_threshold``,
151151
then this sample is classified as an outlier.
152152
153+
.. versionadded:: 0.18
154+
153155
random_state : int, RandomState instance, default=None
154156
The generator used to initialize the centers.
155157
Pass an int for reproducible output across multiple function calls.
@@ -239,6 +241,8 @@ def fit(self, X, y, sample_weight=None):
239241
raises error if sample_weight is passed and base_estimator
240242
fit method does not support it.
241243
244+
.. versionadded:: 0.18
245+
242246
Raises
243247
------
244248
ValueError

sklearn/metrics/_classification.py

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -227,6 +227,8 @@ def confusion_matrix(y_true, y_pred, *, labels=None, sample_weight=None,
227227
sample_weight : array-like of shape (n_samples,), default=None
228228
Sample weights.
229229
230+
.. versionadded:: 0.18
231+
230232
normalize : {'true', 'pred', 'all'}, default=None
231233
Normalizes confusion matrix over the true (rows), predicted (columns)
232234
conditions or all the population. If None, confusion matrix will not be
@@ -789,6 +791,8 @@ def matthews_corrcoef(y_true, y_pred, *, sample_weight=None):
789791
sample_weight : array-like of shape (n_samples,), default=None
790792
Sample weights.
791793
794+
.. versionadded:: 0.18
795+
792796
Returns
793797
-------
794798
mcc : float
@@ -2156,6 +2160,7 @@ def log_loss(y_true, y_pred, *, eps=1e-15, normalize=True, sample_weight=None,
21562160
If not provided, labels will be inferred from y_true. If ``labels``
21572161
is ``None`` and ``y_pred`` has shape (n_samples,) the labels are
21582162
assumed to be binary and are inferred from ``y_true``.
2163+
21592164
.. versionadded:: 0.18
21602165
21612166
Returns

sklearn/metrics/cluster/_supervised.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -881,6 +881,8 @@ def normalized_mutual_info_score(labels_true, labels_pred, *,
881881
def fowlkes_mallows_score(labels_true, labels_pred, *, sparse=False):
882882
"""Measure the similarity of two clusterings of a set of points.
883883
884+
.. versionadded:: 0.18
885+
884886
The Fowlkes-Mallows index (FMI) is defined as the geometric mean between of
885887
the precision and recall::
886888

sklearn/model_selection/_split.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -739,6 +739,8 @@ def split(self, X, y, groups=None):
739739
class TimeSeriesSplit(_BaseKFold):
740740
"""Time Series cross-validator
741741
742+
.. versionadded:: 0.18
743+
742744
Provides train/test indices to split time series data samples
743745
that are observed at fixed time intervals, in train/test sets.
744746
In each split, test indices must be higher than before, and thus shuffling

sklearn/multioutput.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -215,6 +215,8 @@ class MultiOutputRegressor(RegressorMixin, _MultiOutputEstimator):
215215
simple strategy for extending regressors that do not natively support
216216
multi-target regression.
217217
218+
.. versionadded:: 0.18
219+
218220
Parameters
219221
----------
220222
estimator : estimator object

sklearn/preprocessing/_function_transformer.py

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -66,9 +66,13 @@ class FunctionTransformer(TransformerMixin, BaseEstimator):
6666
kw_args : dict, optional
6767
Dictionary of additional keyword arguments to pass to func.
6868
69+
.. versionadded:: 0.18
70+
6971
inv_kw_args : dict, optional
7072
Dictionary of additional keyword arguments to pass to inverse_func.
7173
74+
.. versionadded:: 0.18
75+
7276
Examples
7377
--------
7478
>>> import numpy as np

sklearn/svm/_classes.py

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -213,6 +213,8 @@ def fit(self, X, y, sample_weight=None):
213213
samples. If not provided,
214214
then each sample is given unit weight.
215215
216+
.. versionadded:: 0.18
217+
216218
Returns
217219
-------
218220
self : object
@@ -398,6 +400,8 @@ def fit(self, X, y, sample_weight=None):
398400
samples. If not provided,
399401
then each sample is given unit weight.
400402
403+
.. versionadded:: 0.18
404+
401405
Returns
402406
-------
403407
self : object

0 commit comments

Comments
 (0)
0