8000 DOC fix typos for scoring functions in user guide · scikit-learn/scikit-learn@da021fa · GitHub
[go: up one dir, main page]

Skip to content

Commit da021fa

Browse files
Christian Lorentzenlorentzenchr
Christian Lorentzen
authored andcommitted
DOC fix typos for scoring functions in user guide
1 parent a3cce6f commit da021fa

File tree

1 file changed

+18
-18
lines changed

1 file changed

+18
-18
lines changed

doc/modules/model_evaluation.rst

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -311,15 +311,15 @@ Point forecasts and consistent scoring functions
311311
Let's assume that the target variable :math:`Y` is a random variable, that
312312
we have observations/realizations :math:`y` and that we make predictions
313313
:math:`\hat{y}`.
314-
Scoring functions :math:`S(\hat{y}, y)` then rank the prediction :math:`\hat{y}`
314+
Scoring functions :math:`S(y, \hat{y})` then rank the prediction :math:`\hat{y}`
315315
of different models, given the observation :math:`y`.
316-
The higher the score the better the correponding model.
316+
The higher the score the better the corresponding model.
317317
For a test or validation set :math:`y_i`, one usually uses
318-
:math:`\bar{S} = \frac{1}{n_\text{samples}}\sum_{i=0}^{n_\text{samples}-1} S(\hat{y}_i, y_i)`.
318+
:math:`\bar{S} = \frac{1}{n_\text{samples}}\sum_{i=0}^{n_\text{samples}-1} S(y_i, \hat{y}_i)`.
319319
The prediction :math:`\hat{y}` is said to be a point forecast.
320320
The optimal point forecast under :math:`S` is the Bayes Rule
321-
:math:`\hat{y} = \operatorname{argmin}_x \mathbb{E}[S(x,Y)]` (to get an
322-
unbiased estimate of :math:`\mathbb{E}[S(x,Y)]` for model evaluation is one
321+
:math:`\hat{y} = \operatorname{argmax}_x \mathbb{E}[S(Y,x)]` (to get an
322+
unbiased estimate of :math:`\mathbb{E}[S(Y,x)]` for model evaluation is one
323323
reason to use a test set independent of the training set).
324324
Instead of a point forecast, one could try to issue the whole probability
325325
distribution :math:`F(y)` of the target variable :math:`Y`.
@@ -335,21 +335,21 @@ for the functional at interest, this functional is the (unique) optimal point
335335
forecast under this scoring function.
336336

337337

338-
================== ================ ===============================================
339-
functional scoring function property
340-
================== ================ ===============================================
338+
================== ======================== ===============================================
339+
functional scoring or loss function property
340+
================== ======================== ===============================================
341341
**Classification**
342-
mean brier score strictly consistent
343-
mean log loss strictly consistent
344-
median absolute error strictly consistent
345-
mode zero-one loss consistent (for binary classification)
342+
mean Brier score strictly consistent
343+
mean log loss strictly consistent
344+
median absolute error strictly consistent
345+
mode zero-one loss consistent (for binary classification)
346346
**Regression**
347-
mean squared error strictly consistent (if finite 2nd moment)
348-
mean Poisson deviance strictly consistent (for non-negative target y)
349-
mean Gamma deviance strictly consistent (for positive target y)
350-
median absolute error strictly consistent
351-
mode zero-one loss asymptotically consistent
352-
================== ================ ===============================================
347+
mean squared error strictly consistent (if finite 2nd moment)
348+
mean Poisson deviance strictly consistent (for non-negative target y)
349+
mean Gamma deviance strictly consistent (for positive target y)
350+
median absolute error strictly consistent
351+
mode zero-one loss asymptotically consistent
352+
================== ======================== ===============================================
353353

354354
The zero-one loss is equivalent to the accuracy score, meaning it gives
355355
different score values but the same ranking.

0 commit comments

Comments
 (0)
0