|
| 1 | +""" |
| 2 | +Benchmarks of sklearn solver in LogisticRegression. |
| 3 | +""" |
| 4 | + |
| 5 | +# Author: Tom Dupre la Tour |
| 6 | +import time |
| 7 | +from os.path import expanduser |
| 8 | + |
| 9 | +import matplotlib.pyplot as plt |
| 10 | +import scipy.sparse as sp # noqa |
| 11 | +import numpy as np |
| 12 | +import pandas as pd |
| 13 | + |
| 14 | +from sklearn.datasets import fetch_mldata |
| 15 | +from sklearn.datasets import fetch_rcv1, load_iris, load_digits |
| 16 | +from sklearn.datasets import fetch_20newsgroups_vectorized |
| 17 | +from sklearn.exceptions import ConvergenceWarning |
| 18 | +from sklearn.externals.joblib import delayed, Parallel, Memory |
| 19 | +from sklearn.linear_model import LogisticRegression |
| 20 | +from sklearn.linear_model.logistic import _multinomial_loss |
| 21 | +from sklearn.model_selection import train_test_split |
| 22 | +from sklearn.preprocessing import LabelBinarizer |
| 23 | +from sklearn.preprocessing import StandardScaler # noqa |
| 24 | +from sklearn.utils.testing import ignore_warnings |
| 25 | +from sklearn.utils import shuffle |
| 26 | + |
| 27 | + |
| 28 | +def get_loss(coefs, intercepts, X, y, C, multi_class, penalty): |
| 29 | + if multi_class == 'ovr': |
| 30 | + loss = 0 |
| 31 | + for ii, (coef, intercept) in enumerate(zip(coefs, intercepts)): |
| 32 | + y_bin = y.copy() |
| 33 | + y_bin[y == ii] = 1 |
| 34 | + y_bin[y != ii] = -1 |
| 35 | + loss += np.sum( |
| 36 | + np.log(1. + np.exp(-y_bin * (X.dot(coef) + intercept)))) |
| 37 | + |
| 38 | + if penalty == 'l2': |
| 39 | + loss += 0.5 / C * coef.dot(coef) |
| 40 | + else: |
| 41 | + loss += np.sum(np.abs(coef)) / C |
| 42 | + else: |
| 43 | + coefs_and_intercept = np.vstack((coefs.T, intercepts.T)).T.ravel() |
| 44 | + lbin = LabelBinarizer() |
| 45 | + Y_multi = lbin.fit_transform(y) |
| 46 | + if Y_multi.shape[1] == 1: |
| 47 | + Y_multi = np.hstack([1 - Y_multi, Y_multi]) |
| 48 | + loss, _, _ = _multinomial_loss(coefs_and_intercept, X, Y_multi, 0, |
| 49 | + np.ones(X.shape[0])) |
| 50 | + coefs = coefs.ravel() |
| 51 | + if penalty == 'l2': |
| 52 | + loss += 0.5 * coefs.dot(coefs) / C |
| 53 | + else: |
| 54 | + loss += np.sum(np.abs(coefs)) / C |
| 55 | + |
| 56 | + loss /= X.shape[0] |
| 57 | + |
| 58 | + return loss |
| 59 | + |
| 60 | + |
| 61 | +def fit_single(solver, X, y, X_shape, dataset, penalty='l2', |
| 62 | + multi_class='multinomial', C=1, max_iter=10): |
| 63 | + assert X.shape == X_shape |
| 64 | + |
| 65 | + # if not sp.issparse(X): |
| 66 | + # X = StandardScaler().fit_transform(X) |
| 67 | + |
| 68 | + X_train, X_test, y_train, y_test = train_test_split( |
| 69 | + X, y, random_state=42, stratify=y) |
| 70 | + train_scores = [] |
| 71 | + train_losses = [] |
| 72 | + test_scores = [] |
| 73 | + times = [] |
| 74 | + |
| 75 | + n_repeats = None |
| 76 | + max_iter_range = np.unique(np.int_(np.logspace(0, np.log10(max_iter), 10))) |
| 77 | + for this_max_iter in max_iter_range: |
| 78 | + msg = ('[%s, %s, %s, %s] Max iter: %s' % |
| 79 | + (multi_class, dataset, penalty, solver, this_max_iter)) |
| 80 | + lr = LogisticRegression(solver=solver, multi_class=multi_class, C=C, |
| 81 | +
F438
penalty=penalty, fit_intercept=True, tol=1e-24, |
| 82 | + max_iter=this_max_iter, random_state=42, |
| 83 | + intercept_scaling=10000) |
| 84 | + t0 = time.clock() |
| 85 | + try: |
| 86 | + with ignore_warnings(category=ConvergenceWarning): |
| 87 | + # first time for timing |
| 88 | + if n_repeats is None: |
| 89 | + t0 = time.clock() |
| 90 | + lr.fit(X_train, y_train) |
| 91 | + max_iter_duration = max_iter * (time.clock() - t0) |
| 92 | + n_repeats = max(1, int(10. / max_iter_duration)) |
| 93 | + |
| 94 | + t0 = time.clock() |
| 95 | + for _ in range(n_repeats): |
| 96 | + lr.fit(X_train, y_train) |
| 97 | + train_time = (time.clock() - t0) / n_repeats |
| 98 | + print('%s (repeat=%d)' % (msg, n_repeats)) |
| 99 | + |
| 100 | + except ValueError: |
| 101 | + train_score = np.nan |
| 102 | + train_loss = np.nan |
| 103 | + test_score = np.nan |
| 104 | + train_time = np.nan |
| 105 | + print('%s (skipped)' % (msg, )) |
| 106 | + continue |
| 107 | + |
| 108 | + train_loss = get_loss(lr.coef_, lr.intercept_, X_train, y_train, C, |
| 109 | + multi_class, penalty) |
| 110 | + |
| 111 | + train_score = lr.score(X_train, y_train) |
| 112 | + test_score = lr.score(X_test, y_test) |
| 113 | + |
| 114 | + train_scores.append(train_score) |
| 115 | + train_losses.append(train_loss) |
| 116 | + test_scores.append(test_score) |
| 117 | + times.append(train_time) |
| 118 | + |
| 119 | + return (solver, penalty, dataset, multi_class, times, train_losses, |
| 120 | + train_scores, test_scores) |
| 121 | + |
| 122 | + |
| 123 | +def load_dataset(dataset, n_samples_max): |
| 124 | + if dataset == 'rcv1': |
| 125 | + rcv1 = fetch_rcv1() |
| 126 | + X = rcv1.data |
| 127 | + y = rcv1.target |
| 128 | + |
| 129 | + # take only 3 categories (CCAT, ECAT, MCAT) |
| 130 | + y = y[:, [1, 4, 10]].astype(np.float64) |
| 131 | + # remove samples that have more than one category |
| 132 | + mask = np.asarray(y.sum(axis=1) == 1).ravel() |
| 133 | + y = y[mask, :].indices |
| 134 | + X = X[mask, :] |
| 135 | + |
| 136 | + elif dataset == 'mnist': |
| 137 | + mnist = fetch_mldata('MNIST original') |
| 138 | + X, y = shuffle(mnist.data, mnist.target, random_state=42) |
| 139 | + X = X.astype(np.float64) |
| 140 | + |
| 141 | + elif dataset == 'digits': |
| 142 | + digits = load_digits() |
| 143 | + X, y = digits.data, digits.target |
| 144 | + |
| 145 | + elif dataset == 'iris': |
| 146 | + iris = load_iris() |
| 147 | + X, y = iris.data, iris.target |
| 148 | + |
| 149 | + elif dataset == '20news': |
| 150 | + ng = fetch_20newsgroups_vectorized() |
| 151 | + X = ng.data |
| 152 | + y = ng.target |
| 153 | + |
| 154 | + X = X[:n_samples_max] |
| 155 | + y = y[:n_samples_max] |
| 156 | + |
| 157 | + return X, y |
| 158 | + |
| 159 | + |
| 160 | +def run(solvers, penalties, multi_classes, n_samples_max, max_iter, datasets, |
| 161 | + n_jobs): |
| 162 | + mem = Memory(cachedir=expanduser('~/cache'), verbose=0) |
| 163 | + |
| 164 | + results = [] |
| 165 | + for dataset in datasets: |
| 166 | + for multi_class in multi_classes: |
| 167 | + X, y = load_dataset(dataset, n_samples_max) |
| 168 | + |
| 169 | + cached_fit = mem.cache(fit_single, ignore=['X']) |
| 170 | + cached_fit = fit_single |
| 171 | + |
| 172 | + out = Parallel(n_jobs=n_jobs, mmap_mode=None)(delayed(cached_fit)( |
| 173 | + solver, X, y, X.shape, dataset=dataset, penalty=penalty, |
| 174 | + multi_class=multi_class, C=1, max_iter=max_iter) |
| 175 | + for solver in solvers |
| 176 | + for penalty in penalties) # yapf: disable |
| 177 | + |
| 178 | + results.extend(out) |
| 179 | + |
| 180 | + columns = ("solver penalty dataset multi_class times " |
| 181 | + "train_losses train_scores test_scores").split() |
| 182 | + results_df = pd.DataFrame(out, columns=columns) |
| 183 | + plot(results_df) |
| 184 | + |
| 185 | + |
| 186 | +def plot(res): |
| 187 | + res.set_index(['dataset', 'multi_class', 'penalty'], inplace=True) |
| 188 | + |
| 189 | + grouped = res.groupby(level=['dataset', 'multi_class', 'penalty']) |
| 190 | + |
| 191 | + colors = { |
| 192 | + 'sag': 'red', |
| 193 | + 'saga': 'orange', |
| 194 | + 'liblinear': 'blue', |
| 195 | + 'lbfgs': 'green', |
| 196 | + 'auto': 'black', |
| 197 | + } |
| 198 | + |
| 199 | + for idx, group in grouped: |
| 200 | + dataset, multi_class, penalty = idx |
| 201 | + fig = plt.figure(figsize=(12, 4)) |
| 202 | + |
| 203 | + # ----------------------- |
| 204 | + ax = fig.add_subplot(131) |
| 205 | + train_losses = group['train_losses'] |
| 206 | + tmp = np.sort(np.concatenate(train_losses.values)) |
| 207 | + ref = (2 * tmp[0] - tmp[1]) * 0.999999 |
| 208 | + |
| 209 | + for losses, times, solver in zip(group['train_losses'], group['times'], |
| 210 | + group['solver']): |
| 211 | + losses = losses - ref |
| 212 | + linestyle = '--' if solver == 'auto' else '-' |
| 213 | + ax.plot(times, losses, label=solver, color=colors[solver], |
| 214 | + linestyle=linestyle, marker='.') |
| 215 | + ax.set_xlabel('Time (s)') |
| 216 | + ax.set_ylabel('Training objective (relative to min)') |
| 217 | + ax.set_yscale('log') |
| 218 | + |
| 219 | + # ----------------------- |
| 220 | + ax = fig.add_subplot(132) |
| 221 | + |
| 222 | + for train_score, times, solver in zip(group['train_scores'], |
| 223 | + group['times'], group['solver']): |
| 224 | + linestyle = '--' if solver == 'auto' else '-' |
| 225 | + ax.plot(times, train_score, label=solver, color=colors[solver], |
| 226 | + linestyle=linestyle, marker='.') |
| 227 | + ax.set_xlabel('Time (s)') |
| 228 | + ax.set_ylabel('Train score') |
| 229 | + |
| 230 | + # ----------------------- |
| 231 | + ax = fig.add_subplot(133) |
| 232 | + |
| 233 | + for test_score, times, solver in zip(group['test_scores'], |
| 234 | + group['times'], group['solver']): |
| 235 | + linestyle = '--' if solver == 'auto' else '-' |
| 236 | + ax.plot(times, test_score, label=solver, color=colors[solver], |
| 237 | + linestyle=linestyle, marker='.') |
| 238 | + ax.set_xlabel('Time (s)') |
| 239 | + ax.set_ylabel('Test score') |
| 240 | + ax.legend() |
| 241 | + |
| 242 | + # ----------------------- |
| 243 | + name = '%s_%s_%s' % (multi_class, penalty, dataset) |
| 244 | + plt.suptitle(name) |
| 245 | + fig.tight_layout() |
| 246 | + fig.subplots_adjust(top=0.9) |
| 247 | + plt.savefig('figures/' + name + '.png') |
| 248 | + plt.close(fig) |
| 249 | + print('SAVED: ' + name) |
| 250 | + |
| 251 | + |
| 252 | +if __name__ == '__main__': |
| 253 | + solvers = ['liblinear', 'saga', 'sag', 'lbfgs', 'auto'] |
| 254 | + penalties = ['l2', 'l1'] |
| 255 | + multi_classes = ['multinomial', 'ovr'] |
| 256 | + datasets = ['iris', 'digits', 'mnist', '20news', 'rcv1'] |
| 257 | + |
| 258 | + run(solvers, penalties, multi_classes, n_samples_max=None, n_jobs=5, |
| 259 | + datasets=datasets, max_iter=40) |
0 commit comments