8000 DOC: Added drop down menus to `1.8` Cross Decomposition (#27916) · scikit-learn/scikit-learn@d43d7d6 · GitHub
[go: up one dir, main page]

Skip to content

Commit d43d7d6

Browse files
authored
DOC: Added drop down menus to 1.8 Cross Decomposition (#27916)
1 parent 95b2c9d commit d43d7d6

File tree

1 file changed

+14
-7
lines changed

1 file changed

+14
-7
lines changed

doc/modules/cross_decomposition.rst

Lines changed: 14 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -92,9 +92,9 @@ Step *a)* may be performed in two ways: either by computing the whole SVD of
9292
values, or by directly computing the singular vectors using the power method (cf section 11.3 in [1]_),
9393
which corresponds to the `'nipals'` option of the `algorithm` parameter.
9494

95-
96-
Transforming data
97-
^^^^^^^^^^^^^^^^^
95+
|details-start|
96+
**Transforming data**
97+
|details-split|
9898

9999
To transform :math:`X` into :math:`\bar{X}`, we need to find a projection
100100
matrix :math:`P` such that :math:`\bar{X} = XP`. We know that for the
@@ -106,9 +106,11 @@ training data, :math:`\Xi = XP`, and :math:`X = \Xi \Gamma^T`. Setting
106106

107107
Similarly, :math:` 10000 Y` can be transformed using the rotation matrix
108108
:math:`V(\Delta^T V)^{-1}`, accessed via the `y_rotations_` attribute.
109+
|details-end|
109110

110-
Predicting the targets Y
111-
^^^^^^^^^^^^^^^^^^^^^^^^
111+
|details-start|
112+
**Predicting the targets Y**
113+
|details-split|
112114

113115
To predict the targets of some data :math:`X`, we are looking for a
114116
coefficient matrix :math:`\beta \in R^{d \times t}` such that :math:`Y =
@@ -125,6 +127,8 @@ P \Delta^T`, and as a result the coefficient matrix :math:`\beta = \alpha P
125127

126128
:math:`\beta` can be accessed through the `coef_` attribute.
127129

130+
|details-end|
131+
128132
PLSSVD
129133
------
130134

@@ -180,14 +184,17 @@ Since :class:`CCA` involves the inversion of :math:`X_k^TX_k` and
180184
:math:`Y_k^TY_k`, this estimator can be unstable if the number of features or
181185
targets is greater than the number of samples.
182186

183-
184-
.. topic:: Reference:
187+
|details-start|
188+
**Reference**
189+
|details-split|
185190

186191
.. [1] `A survey of Partial Least Squares (PLS) methods, with emphasis on
187192
the two-block case
188193
<https://stat.uw.edu/sites/default/files/files/reports/2000/tr371.pdf>`_
189194
JA Wegelin
190195
196+
|details-end|
197+
191198
.. topic:: Examples:
192199

193200
* :ref:`sphx_glr_auto_examples_cross_decomposition_plot_compare_cross_decomposition.py`

0 commit comments

Comments
 (0)
10CB
0