8000 update docstrings for all classes · scikit-learn/scikit-learn@cf72fd4 · GitHub
[go: up one dir, main page]

Skip to content

Commit cf72fd4

Browse files
committed
update docstrings for all classes
1 parent a591eaa commit cf72fd4

File tree

3 files changed

+13
-14
lines changed

3 files changed

+13
-14
lines changed

sklearn/ensemble/forest.py

Lines changed: 5 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -809,8 +809,7 @@ class RandomForestClassifier(ForestClassifier):
809809
min_weight_fraction_leaf : float, optional (default=0.)
810810
The minimum weighted fraction of the sum total of weights (of all
811811
the input samples) required to be at a leaf node. Samples have
812-
equal weight when sample_weight is not provided, but
813-
min_samples_leaf is more efficient.
812+
equal weight when sample_weight is not provided.
814813
815814
max_leaf_nodes : int or None, optional (default=None)
816815
Grow trees with ``max_leaf_nodes`` in best-first fashion.
@@ -1022,8 +1021,7 @@ class RandomForestRegressor(ForestRegressor):
10221021
min_weight_fraction_leaf : float, optional (default=0.)
10231022
The minimum weighted fraction of the sum total of weights (of all
10241023
the input samples) required to be at a leaf node. Samples have
1025-
equal weight when sample_weight is not provided, but
1026-
min_samples_leaf is more efficient.
1024+
equal weight when sample_weight is not provided.
10271025
10281026
max_leaf_nodes : int or None, optional (default=None)
10291027
Grow trees with ``max_leaf_nodes`` in best-first fashion.
@@ -1195,8 +1193,7 @@ class ExtraTreesClassifier(ForestClassifier):
11951193
min_weight_fraction_leaf : float, optional (default=0.)
11961194
The minimum weighted fraction of the sum total of weights (of all
11971195
the input samples) required to be at a leaf node. Samples have
1198-
equal weight when sample_weight is not provided, but
1199-
min_samples_leaf is more efficient.
1196+
equal weight when sample_weight is not provided.
12001197
12011198
max_leaf_nodes : int or None, optional (default=None)
12021199
Grow trees with ``max_leaf_nodes`` in best-first fashion.
@@ -1407,8 +1404,7 @@ class ExtraTreesRegressor(ForestRegressor):
14071404
min_weight_fraction_leaf : float, optional (default=0.)
14081405
The minimum weighted fraction of the sum total of weights (of all
14091406
the input samples) required to be at a leaf node. Samples have
1410-
equal weight when sample_weight is not provided, but
1411-
min_samples_leaf is more efficient.
1407+
equal weight when sample_weight is not provided.
14121408
14131409
max_leaf_nodes : int or None, optional (default=None)
14141410
Grow trees with ``max_leaf_nodes`` in best-first fashion.
@@ -1566,8 +1562,7 @@ class RandomTreesEmbedding(BaseForest):
15661562
min_weight_fraction_leaf : float, optional (default=0.)
15671563
The minimum weighted fraction of the sum total of weights (of all
15681564
the input samples) required to be at a leaf node. Samples have
1569-
equal weight when sample_weight is not provided, but
1570-
min_samples_leaf is more efficient.
1565+
equal weight when sample_weight is not provided.
15711566
15721567
max_leaf_nodes : int or None, optional (default=None)
15731568
Grow trees with ``max_leaf_nodes`` in best-first fashion.

sklearn/ensemble/gradient_boosting.py

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1331,7 +1331,8 @@ class GradientBoostingClassifier(BaseGradientBoosting, ClassifierMixin):
13311331
13321332
min_weight_fraction_leaf : float, optional (default=0.)
13331333
The minimum weighted fraction of the sum total of weights (of all
1334-
the input samples) required to be at a leaf node.
1334+
the input samples) required to be at a leaf node. Samples have
1335+
equal weight when sample_weight is not provided.
13351336
13361337
subsample : float, optional (default=1.0)
13371338
The fraction of samples to be used for fitting the individual base
@@ -1699,7 +1700,8 @@ class GradientBoostingRegressor(BaseGradientBoosting, RegressorMixin):
16991700
17001701
min_weight_fraction_leaf : float, optional (default=0.)
17011702
The minimum weighted fraction of the sum total of weights (of all
1702-
the input samples) required to be at a leaf node.
1703+
the input samples) required to be at a leaf node. Samples have
1704+
equal weight when sample_weight is not provided.
17031705
17041706
subsample : float, optional (default=1.0)
17051707
The fraction of samples to be used for fitting the individual base

sklearn/tree/tree.py

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -594,7 +594,8 @@ class DecisionTreeClassifier(BaseDecisionTree, ClassifierMixin):
594594
595595
min_weight_fraction_leaf : float, optional (default=0.)
596596
The minimum weighted fraction of the sum total of weights (of all
597-
the input samples) required to be at a leaf node.
597+
the input samples) required to be at a leaf node. Samples have
598+
equal weight when sample_weight is not provided.
598599
599600
max_leaf_nodes : int or None, optional (default=None)
600601
Grow a tree with ``max_leaf_nodes`` in best-first fashion.
@@ -864,7 +865,8 @@ class DecisionTreeRegressor(BaseDecisionTree, RegressorMixin):
864865
865866
min_weight_fraction_leaf : float, optional (default=0.)
866867
The minimum weighted fraction of the sum total of weights (of all
867-
the input samples) required to be at a leaf node.
868+
the input samples) required to be at a leaf node. Samples have
869+
equal weight when sample_weight is not provided.
868870
869871
max_leaf_nodes : int or None, optional (default=None)
870872
Grow a tree with ``max_leaf_nodes`` in best-first fashion.

0 commit comments

Comments
 (0)
0