@@ -156,18 +156,18 @@ class DBSCAN(ClusterMixin, BaseEstimator):
156
156
157
157
Parameters
158
158
----------
159
- eps : float, optional
159
+ eps : float, default=0.5
160
160
The maximum distance between two samples for one to be considered
161
161
as in the neighborhood of the other. This is not a maximum bound
162
162
on the distances of points within a cluster. This is the most
163
163
important DBSCAN parameter to choose appropriately for your data set
164
164
and distance function.
165
165
166
- min_samples : int, optional
166
+ min_samples : int, default=5
167
167
The number of samples (or total weight) in a neighborhood for a point
168
168
to be considered as a core point. This includes the point itself.
169
169
170
- metric : string, or callable
170
+ metric : string, or callable, default='euclidean'
171
171
The metric to use when calculating distance between instances in a
172
172
feature array. If metric is a string or callable, it must be one of
173
173
the options allowed by :func:`sklearn.metrics.pairwise_distances` for
@@ -179,27 +179,27 @@ class DBSCAN(ClusterMixin, BaseEstimator):
179
179
.. versionadded:: 0.17
180
180
metric *precomputed* to accept precomputed sparse matrix.
181
181
182
- metric_params : dict, optional
182
+ metric_params : dict, default=None
183
183
Additional keyword arguments for the metric function.
184
184
185
185
.. versionadded:: 0.19
186
186
187
- algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
187
+ algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
188
188
The algorithm to be used by the NearestNeighbors module
189
189
to compute pointwise distances and find nearest neighbors.
190
190
See NearestNeighbors module documentation for details.
191
191
192
- leaf_size : int, optional ( default = 30)
192
+ leaf_size : int, default=30
193
193
Leaf size passed to BallTree or cKDTree. This can affect the speed
194
194
of the construction and query, as well as the memory required
195
195
to store the tree. The optimal value depends
196
196
on the nature of the problem.
197
197
198
- p : float, optional
198
+ p : float, default=None
199
199
The power of the Minkowski metric to be used to calculate distance
200
200
between points.
201
201
202
- n_jobs : int or None, optional ( default=None)
202
+ n_jobs : int or None, default=None
203
203
The number of parallel jobs to run.
204
204
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
205
205
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
0 commit comments