8000 DOC fixed default values in dbscan (#15753) · scikit-learn/scikit-learn@cc88ec9 · GitHub
[go: up one dir, main page]

Skip to content

Commit cc88ec9

Browse files
cgsavardrth
authored andcommitted
DOC fixed default values in dbscan (#15753)
1 parent d06ef03 commit cc88ec9

File tree

1 file changed

+8
-8
lines changed

1 file changed

+8
-8
lines changed

sklearn/cluster/_dbscan.py

+8-8
Original file line numberDiff line numberDiff line change
@@ -156,18 +156,18 @@ class DBSCAN(ClusterMixin, BaseEstimator):
156156
157157
Parameters
158158
----------
159-
eps : float, optional
159+
eps : float, default=0.5
160160
The maximum distance between two samples for one to be considered
161161
as in the neighborhood of the other. This is not a maximum bound
162162
on the distances of points within a cluster. This is the most
163163
important DBSCAN parameter to choose appropriately for your data set
164164
and distance function.
165165
166-
min_samples : int, optional
166+
min_samples : int, default=5
167167
The number of samples (or total weight) in a neighborhood for a point
168168
to be considered as a core point. This includes the point itself.
169169
170-
metric : string, or callable
170+
metric : string, or callable, default='euclidean'
171171
The metric to use when calculating distance between instances in a
172172
feature array. If metric is a string or callable, it must be one of
173173
the options allowed by :func:`sklearn.metrics.pairwise_distances` for
@@ -179,27 +179,27 @@ class DBSCAN(ClusterMixin, BaseEstimator):
179179
.. versionadded:: 0.17
180180
metric *precomputed* to accept precomputed sparse matrix.
181181
182-
metric_params : dict, optional
182+
metric_params : dict, default=None
183183
Additional keyword arguments for the metric function.
184184
185185
.. versionadded:: 0.19
186186
187-
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
187+
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
188188
The algorithm to be used by the NearestNeighbors module
189189
to compute pointwise distances and find nearest neighbors.
190190
See NearestNeighbors module documentation for details.
191191
192-
leaf_size : int, optional (default = 30)
192+
leaf_size : int, default=30
193193
Leaf size passed to BallTree or cKDTree. This can affect the speed
194194
of the construction and query, as well as the memory required
195195
to store the tree. The optimal value depends
196196
on the nature of the problem.
197197
198-
p : float, optional
198+
p : float, default=None
199199
The power of the Minkowski metric to be used to calculate distance
200200
between points.
201201
202-
n_jobs : int or None, optional (default=None)
202+
n_jobs : int or None, default=None
203203
The number of parallel jobs to run.
204204
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
205205
``-1`` means using all processors. See :term:`Glossary <n_jobs>`

0 commit comments

Comments
 (0)
0