@@ -47,7 +47,7 @@ def _get_response_values(
4747 preference. The method returned corresponds to the first method in
4848 the list and which is implemented by `estimator`.
4949
50- pos_label : str or int , default=None
50+ pos_label : int, float, bool or str , default=None
5151 The class considered as the positive class when computing
5252 the metrics. By default, `estimators.classes_[1]` is
5353 considered as the positive class.
@@ -58,7 +58,7 @@ def _get_response_values(
5858 Target scores calculated from the provided response_method
5959 and `pos_label`.
6060
61- pos_label : str, int or None
61+ pos_label : int, float, bool, str or None
6262 The class considered as the positive class when computing
6363 the metrics. Returns `None` if `estimator` is a regressor.
6464
@@ -133,24 +133,24 @@ def _get_response_values_binary(estimator, X, response_method, pos_label=None):
133133 X : {array-like, sparse matrix} of shape (n_samples, n_features)
134134 Input values.
135135
136- response_method: {'auto', 'predict_proba', 'decision_function'}
136+ response_method : {'auto', 'predict_proba', 'decision_function'}
137137 Specifies whether to use :term:`predict_proba` or
138138 :term:`decision_function` as the target response. If set to 'auto',
139139 :term:`predict_proba` is tried first and if it does not exist
140140 :term:`decision_function` is tried next.
141141
142- pos_label : str or int , default=None
142+ pos_label : int, float, bool or str , default=None
143143 The class considered as the positive class when computing
144144 the metrics. By default, `estimators.classes_[1]` is
145145 considered as the positive class.
146146
147147 Returns
148148 -------
149- y_pred: ndarray of shape (n_samples,)
149+ y_pred : ndarray of shape (n_samples,)
150150 Target scores calculated from the provided response_method
151151
6854
and pos_label.
152152
153- pos_label: str or int
153+ pos_label : int, float, bool or str
154154 The class considered as the positive class when computing
155155 the metrics.
156156 """
0 commit comments