8000 DOC Ensures that RandomizedSearchCV passes numpydoc validation (#21131) · scikit-learn/scikit-learn@c588230 · GitHub
[go: up one dir, main page]

Skip to content

Commit c588230

Browse files
authored
DOC Ensures that RandomizedSearchCV passes numpydoc validation (#21131)
1 parent 3c6805a commit c588230

File tree

2 files changed

+7
-8
lines changed

2 files changed

+7
-8
lines changed

maint_tools/test_docstrings.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,6 @@
3232
"PatchExtractor",
3333
"PolynomialFeatures",
3434
"QuadraticDiscriminantAnalysis",
35-
"RandomizedSearchCV",
3635
"RobustScaler",
3736
"SelfTrainingClassifier",
3837
"SparseRandomProjection",

sklearn/model_selection/_search.py

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1420,7 +1420,7 @@ class RandomizedSearchCV(BaseSearchCV):
14201420
14211421
Parameters
14221422
----------
1423-
estimator : estimator object.
1423+
estimator : estimator object
14241424
A object of that type is instantiated for each grid point.
14251425
This is assumed to implement the scikit-learn estimator interface.
14261426
Either estimator needs to provide a ``score`` function,
@@ -1692,6 +1692,12 @@ class RandomizedSearchCV(BaseSearchCV):
16921692
16931693
.. versionadded:: 1.0
16941694
1695+
See Also
1696+
--------
1697+
GridSearchCV : Does exhaustive search over a grid of parameters.
1698+
ParameterSampler : A generator over parameter settings, constructed from
1699+
param_distributions.
1700+
16951701
Notes
16961702
-----
16971703
The parameters selected are those that maximize the score of the held-out
@@ -1705,12 +1711,6 @@ class RandomizedSearchCV(BaseSearchCV):
17051711
`pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 *
17061712
n_jobs`.
17071713
1708-
See Also
1709-
--------
1710-
GridSearchCV : Does exhaustive search over a grid of parameters.
1711-
ParameterSampler : A generator over parameter settings, constructed from
1712-
param_distributions.
1713-
17141714
Examples
17151715
--------
17161716
>>> from sklearn.datasets import load_iris

0 commit comments

Comments
 (0)
0