8000 Reverted the change, added regression test · scikit-learn/scikit-learn@c48626c · GitHub
[go: up one dir, main page]

Skip to content

Commit c48626c

Browse files
committed
Reverted the change, added regression test
1 parent 6ff0bbe commit c48626c

File tree

2 files changed

+4
-3
lines changed

2 files changed

+4
-3
lines changed

sklearn/metrics/cluster/tests/test_unsupervised.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
from scipy.sparse import csr_matrix
33

44
from sklearn import datasets
5-
from sklearn.metrics.cluster.unsupervised import silhouette_score
5+
from sklearn.metrics.cluster.unsupervised import silhouette_score, silhouette_samples
66
from sklearn.metrics import pairwise_distances
77
from sklearn.utils.testing import assert_false, assert_almost_equal
88
from sklearn.utils.testing import assert_raises_regexp
@@ -48,7 +48,8 @@ def test_no_nan():
4848
D = np.random.RandomState(0).rand(len(labels), len(labels))
4949
silhouette = silhouette_score(D, labels, metric='precomputed')
5050
assert_false(np.isnan(silhouette))
51-
51+
silhouette_sample = silhouette_samples([[3],[3]], np.array([2,4]))
52+
assert_false(np.isnan(silhouette_sample).any())
5253

5354
def test_correct_labelsize():
5455
# Assert 1 < n_labels < n_samples

sklearn/metrics/cluster/unsupervised.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -162,7 +162,7 @@ def silhouette_samples(X, labels, metric='euclidean', **kwds):
162162
B = np.array([_nearest_cluster_distance(distances[i], labels, i)
163163
for i in range(n)])
164164
sil_samples = (B - A) / np.maximum(A, B)
165-
return sil_samples
165+
return np.nan_to_num(sil_samples)
166166

167167

168168
def _intra_cluster_distance(distances_row, labels, i):

0 commit comments

Comments
 (0)
0