@@ -857,7 +857,7 @@ def fit(self, X, y, sample_weight=None):
857
857
)
858
858
859
859
for iteration in range (begin_at_stage , self .max_iter ):
860
- if self .verbose :
860
+ if self .verbose >= 2 :
861
861
iteration_start_time = time ()
862
862
print (
863
863
"[{}/{}] " .format (iteration + 1 , self .max_iter ), end = "" , flush = True
@@ -987,7 +987,7 @@ def fit(self, X, y, sample_weight=None):
987
987
raw_predictions_val = raw_predictions_val ,
988
988
)
989
989
990
- if self .verbose :
990
+ if self .verbose >= 2 :
991
991
self ._print_iteration_stats (iteration_start_time )
992
992
993
993
# maybe we could also early stop if all the trees are stumps?
@@ -1617,7 +1617,8 @@ class HistGradientBoostingRegressor(RegressorMixin, BaseHistGradientBoosting):
1617
1617
iterations to be considered an improvement upon the reference score.
1618
1618
verbose : int, default=0
1619
1619
The verbosity level. If not zero, print some information about the
1620
- fitting process.
1620
+ fitting process. ``1`` prints only summary info, ``2`` prints info per
1621
+ iteration.
1621
1622
random_state : int, RandomState instance or None, default=None
1622
1623
Pseudo-random number generator to control the subsampling in the
1623
1624
binning process, and the train/validation data split if early stopping
@@ -1996,7 +1997,8 @@ class HistGradientBoostingClassifier(ClassifierMixin, BaseHistGradientBoosting):
1996
1997
considered an improvement upon the reference score.
1997
1998
verbose : int, default=0
1998
1999
The verbosity level. If not zero, print some information about the
1999
- fitting process.
2000
+ fitting process. ``1`` prints only summary info, ``2`` prints info per
2001
+ iteration.
2000
2002
random_state : int, RandomState instance or None, default=None
2001
2003
Pseudo-random number generator to control the subsampling in the
2002
2004
binning process, and the train/validation data split if early stopping
0 commit comments