@@ -624,34 +624,32 @@ def _log_reg_scoring_path(
624
624
test : list of indices
625
625
The indices of the test set.
626
626
627
- pos_class : int, default=None
627
+ pos_class : int
628
628
The class with respect to which we perform a one-vs-all fit.
629
629
If None, then it is assumed that the given problem is binary.
630
630
631
- Cs : int or list of floats, default=10
631
+ Cs : int or list of floats
632
632
Each of the values in Cs describes the inverse of
633
633
regularization strength. If Cs is as an int, then a grid of Cs
634
634
values are chosen in a logarithmic scale between 1e-4 and 1e4.
635
- If not provided, then a fixed set of values for Cs are used.
636
635
637
- scoring : callable, default=None
636
+ scoring : callable
638
637
A string (see model evaluation documentation) or
639
638
a scorer callable object / function with signature
640
639
``scorer(estimator, X, y)``. For a list of scoring functions
641
- that can be used, look at :mod:`sklearn.metrics`. The
642
- default scoring option used is accuracy_score.
640
+ that can be used, look at :mod:`sklearn.metrics`.
643
641
644
- fit_intercept : bool, default=False
642
+ fit_intercept : bool
645
643
If False, then the bias term is set to zero. Else the last
646
644
term of each coef_ gives us the intercept.
647
645
648
- max_iter : int, default=100
646
+ max_iter : int
649
647
Maximum number of iterations for the solver.
650
648
651
- tol : float, default=1e-4
649
+ tol : float
652
650
Tolerance for stopping criteria.
653
651
654
- class_weight : dict or 'balanced', default=None
652
+ class_weight : dict or 'balanced'
655
653
Weights associated with classes in the form ``{class_label: weight}``.
656
654
If not given, all classes are supposed to have weight one.
657
655
@@ -662,25 +660,24 @@ def _log_reg_scoring_path(
662
660
Note that these weights will be multiplied with sample_weight (passed
663
661
through the fit method) if sample_weight is specified.
664
662
665
- verbose : int, default=0
663
+ verbose : int
666
664
For the liblinear and lbfgs solvers set verbose to any positive
667
665
number for verbosity.
668
666
669
- solver : {'lbfgs', 'liblinear', 'newton-cg', 'newton-cholesky', 'sag', 'saga'}, \
670
- default='lbfgs'
667
+ solver : {'lbfgs', 'liblinear', 'newton-cg', 'newton-cholesky', 'sag', 'saga'}
671
668
Decides which solver to use.
672
669
673
- penalty : {'l1', 'l2', 'elasticnet'}, default='l2'
670
+ penalty : {'l1', 'l2', 'elasticnet'}
674
671
Used to specify the norm used in the penalization. The 'newton-cg',
675
672
'sag' and 'lbfgs' solvers support only l2 penalties. 'elasticnet' is
676
673
only supported by the 'saga' solver.
677
674
678
- dual : bool, default=False
675
+ dual : bool
679
676
Dual or primal formulation. Dual formulation is only implemented for
680
677
l2 penalty with liblinear solver. Prefer dual=False when
681
678
n_samples > n_features.
682
679
683
- intercept_scaling : float, default=1.
680
+ intercept_scaling : float
684
681
Useful only when the solver 'liblinear' is used
685
682
and self.fit_intercept is set to True. In this case, x becomes
686
683
[x, self.intercept_scaling],
@@ -692,26 +689,26 @@ def _log_reg_scoring_path(
692
689
To lessen the effect of regularization on synthetic feature weight
693
690
(and therefore on the intercept) intercept_scaling has to be increased.
694
691
695
- multi_class : {'auto', 'ovr', 'multinomial'}, default='auto'
692
+ multi_class : {'auto', 'ovr', 'multinomial'}
696
693
If the option chosen is 'ovr', then a binary problem is fit for each
697
694
label. For 'multinomial' the loss minimised is the multinomial loss fit
698
695
across the entire probability distribution, *even when the data is
699
696
binary*. 'multinomial' is unavailable when solver='liblinear'.
700
697
701
- random_state : int, RandomState instance, default=None
698
+ random_state : int, RandomState instance
702
699
Used when ``solver`` == 'sag', 'saga' or 'liblinear' to shuffle the
703
700
data. See :term:`Glossary <random_state>` for details.
704
701
705
- max_squared_sum : float, default=None
702
+ max_squared_sum : float
706
703
Maximum squared sum of X over samples. Used only in SAG solver.
707
704
If None, it will be computed, going through all the samples.
708
705
The value should be precomputed to speed up cross validation.
709
706
710
- sample_weight : array-like of shape(n_samples,), default=None
707
+ sample_weight : array-like of shape(n_samples,)
711
708
Array of weights that are assigned to individual samples.
712
709
If not provided, then each sample is given unit weight.
713
710
714
- l1_ratio : float, default=None
711
+ l1_ratio : float
715
712
The Elastic-Net mixing parameter, with ``0 <= l1_ratio <= 1``. Only
716
713
used if ``penalty='elasticnet'``. Setting ``l1_ratio=0`` is equivalent
717
714
to using ``penalty='l2'``, while setting ``l1_ratio=1`` is equivalent
0 commit comments