8000 Fix numpydoc format for sklearn.model_selection._validation.numpydoc_… · scikit-learn/scikit-learn@c2700f5 · GitHub
[go: up one dir, main page]

Skip to content

Commit c2700f5

Browse files
iofallarisayosh
authored andcommitted
Fix numpydoc format for sklearn.model_selection._validation.numpydoc_validation_cross_val_predict (#21433)
Co-authored-by: iofall <50991099+iofall@users.noreply.github.com> Co-authored-by: arisayosh <15692997+arisayosh@users.noreply.github.com>
1 parent 84c4676 commit c2700f5

File tree

2 files changed

+2
-3
lines changed

2 files changed

+2
-3
lines changed

maint_tools/test_docstrings.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -174,7 +174,6 @@
174174
"sklearn.metrics.pairwise.sigmoid_kernel",
175175
"sklearn.model_selection._split.check_cv",
176176
"sklearn.model_selection._split.train_test_split",
177-
"sklearn.model_selection._validation.cross_val_predict",
178177
"sklearn.model_selection._validation.cross_val_score",
179178
"sklearn.model_selection._validation.cross_validate",
180179
"sklearn.model_selection._validation.learning_curve",

sklearn/model_selection/_validation.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -808,7 +808,7 @@ def cross_val_predict(
808808
pre_dispatch="2*n_jobs",
809809
method="predict",
810810
):
811-
"""Generate cross-validated estimates for each input data point
811+
"""Generate cross-validated estimates for each input data point.
812812
813813
The data is split according to the cv parameter. Each sample belongs
814814
to exactly one test set, and its prediction is computed with an
@@ -846,7 +846,7 @@ def cross_val_predict(
846846
- None, to use the default 5-fold cross validation,
847847
- int, to specify the number of folds in a `(Stratified)KFold`,
848848
- :term:`CV splitter`,
849-
- An iterable yielding (train, test) splits as arrays of indices.
849+
- An iterable that generates (train, test) splits as arrays of indices.
850850
851851
For int/None inputs, if the estimator is a classifier and ``y`` is
852852
either binary or multiclass, :class:`StratifiedKFold` is used. In all

0 commit comments

Comments
 (0)
0