8000 DOC Ensures that log_likelihood passes numpydoc validation (#21438) · scikit-learn/scikit-learn@c020c35 · GitHub
[go: up one dir, main page]

Skip to content

Commit c020c35

Browse files
authored
DOC Ensures that log_likelihood passes numpydoc validation (#21438)
1 parent aa675f9 commit c020c35

File tree

2 files changed

+4
-5
lines changed

2 files changed

+4
-5
lines changed

maint_tools/test_docstrings.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,6 @@
3131
"sklearn.cluster._spectral.spectral_clustering",
3232
"sklearn.compose._column_transformer.make_column_transformer",
3333
"sklearn.covariance._empirical_covariance.empirical_covariance",
34-
"sklearn.covariance._empirical_covariance.log_likelihood",
3534
"sklearn.covariance._graph_lasso.graphical_lasso",
3635
"sklearn.covariance._robust_covariance.fast_mcd",
3736
"sklearn.covariance._shrunk_covariance.ledoit_wolf",

sklearn/covariance/_empirical_covariance.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -22,11 +22,11 @@
2222

2323

2424
def log_likelihood(emp_cov, precision):
25-
"""Computes the sample mean of the log_likelihood under a covariance model
25+
"""Compute the sample mean of the log_likelihood under a covariance model.
2626
27-
computes the empirical expected log-likelihood (accounting for the
28-
normalization terms and scaling), allowing for universal comparison (beyond
29-
this software package)
27+
Computes the empirical expected log-likelihood, allowing for universal
28+
comparison (beyond this software package), and accounts for normalization
29+
terms and scaling.
3030
3131
Parameters
3232
----------

0 commit comments

Comments
 (0)
0