8000 DOC Ensures that OrthogonalMatchingPursuit passes numpydoc validation… · scikit-learn/scikit-learn@bd3cf28 · GitHub
[go: up one dir, main page]

Skip to content

Commit bd3cf28

Browse files
mani2106glemaitre
authored andcommitted
DOC Ensures that OrthogonalMatchingPursuit passes numpydoc validation (#21296)
1 parent ff00693 commit bd3cf28

File tree

2 files changed

+23
-22
lines changed

2 files changed

+23
-22
lines changed

maint_tools/test_docstrings.py

-1
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,6 @@
1717
"MultiTaskElasticNet",
1818
"MultiTaskElasticNetCV",
1919
"MultiTaskLassoCV",
20-
"OrthogonalMatchingPursuit",
2120
"OrthogonalMatchingPursuitCV",
2221
"PassiveAggressiveRegressor",
2322
"SparseRandomProjection",

sklearn/linear_model/_omp.py

+23-21
Original file line numberDiff line numberDiff line change
@@ -604,7 +604,7 @@ class OrthogonalMatchingPursuit(MultiOutputMixin, RegressorMixin, LinearModel):
604604
Maximum norm of the residual. If not None, overrides n_nonzero_coefs.
605605
606606
fit_intercept : bool, default=True
607-
whether to calculate the intercept for this model. If set
607+
Whether to calculate the intercept for this model. If set
608608
to false, no intercept will be used in calculations
609609
(i.e. data is expected to be centered).
610610
@@ -653,16 +653,18 @@ class OrthogonalMatchingPursuit(MultiOutputMixin, RegressorMixin, LinearModel):
653653
654654
.. versionadded:: 1.0
655655
656-
Examples
656+
See Also
657657
--------
658-
>>> from sklearn.linear_model import OrthogonalMatchingPursuit
659-
>>> from sklearn.datasets import make_regression
660-
>>> X, y = make_regression(noise=4, random_state=0)
661-
>>> reg = OrthogonalMatchingPursuit(normalize=False).fit(X, y)
662-
>>> reg.score(X, y)
663-
0.9991...
664-
>>> reg.predict(X[:1,])
665-
array([-78.3854...])
658+
orthogonal_mp : Solves n_targets Orthogonal Matching Pursuit problems.
659+
orthogonal_mp_gram : Solves n_targets Orthogonal Matching Pursuit
660+
problems using only the Gram matrix X.T * X and the product X.T * y.
661+
lars_path : Compute Least Angle Regression or Lasso path using LARS algorithm.
662+
Lars : Least Angle Regression model a.k.a. LAR.
663+
LassoLars : Lasso model fit with Least Angle Regression a.k.a. Lars.
664+
sklearn.decomposition.sparse_encode : Generic sparse coding.
665+
Each column of the result is the solution to a Lasso problem.
666+
OrthogonalMatchingPursuitCV : Cross-validated
667+
Orthogonal Matching Pursuit model (OMP).
666668
667669
Notes
668670
-----
@@ -676,15 +678,16 @@ class OrthogonalMatchingPursuit(MultiOutputMixin, RegressorMixin, LinearModel):
676678
Matching Pursuit Technical Report - CS Technion, April 2008.
677679
https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
678680
679-
See Also
681+
Examples
680682
--------
681-
orthogonal_mp
682-
orthogonal_mp_gram
683-
lars_path
684-
Lars
685-
LassoLars
686-
sklearn.decomposition.sparse_encode
687-
OrthogonalMatchingPursuitCV
683+
>>> from sklearn.linear_model import OrthogonalMatchingPursuit
684+
>>> from sklearn.datasets import make_regression
685+
>>> X, y = make_regression(noise=4, random_state=0)
686+
>>> reg = OrthogonalMatchingPursuit(normalize=False).fit(X, y)
687+
>>> reg.score(X, y)
688+
0.9991...
689+
>>> reg.predict(X[:1,])
690+
array([-78.3854...])
688691
"""
689692

690693
def __init__(
@@ -711,13 +714,12 @@ def fit(self, X, y):
711714
Training data.
712715
713716
y : array-like of shape (n_samples,) or (n_samples, n_targets)
714-
Target values. Will be cast to X's dtype if necessary
715-
717+
Target values. Will be cast to X's dtype if necessary.
716718
717719
Returns
718720
-------
719721
self : object
720-
returns an instance of self.
722+
Returns an instance of self.
721723
"""
722724
_normalize = _deprecate_normalize(
723725
self.normalize, default=True, estimator_name=self.__class__.__name__

0 commit comments

Comments
 (0)
0