8000 [MRG] Add an example for ensemble.BaggingRegressor (#15196) · scikit-learn/scikit-learn@bc3a7e1 · GitHub
[go: up one dir, main page]

Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit bc3a7e1

Browse files
steinfurtqinhanmin2014
authored andcommitted
[MRG] Add an example for ensemble.BaggingRegressor (#15196)
1 parent 9b0d02d commit bc3a7e1

File tree

1 file changed

+15
-5
lines changed

1 file changed

+15
-5
lines changed

sklearn/ensemble/_bagging.py

Lines changed: 15 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -546,14 +546,11 @@ class BaggingClassifier(ClassifierMixin, BaseBagging):
546546
>>> from sklearn.svm import SVC
547547
>>> from sklearn.ensemble import BaggingClassifier
548548
>>> from sklearn.datasets import make_classification
549-
>>> X, y = make_classification(n_samples=1000, n_features=4,
549+
>>> X, y = make_classification(n_samples=100, n_features=4,
550550
... n_informative=2, n_redundant=0,
551551
... random_state=0, shuffle=False)
552-
>>> clf = BaggingClassifier(n_estimators=100, random_state=0).fit(X, y)
553-
>>> clf.predict([[0, 0, 0, 0]])
554-
array([1])
555552
>>> clf = BaggingClassifier(base_estimator=SVC(),
556-
... n_estimators=100, random_state=0).fit(X, y)
553+
... n_estimators=10, random_state=0).fit(X, y)
557554
>>> clf.predict([[0, 0, 0, 0]])
558555
array([1])
559556
@@ -935,6 +932,19 @@ class BaggingRegressor(RegressorMixin, BaseBagging):
935932
`oob_prediction_` might contain NaN. This attribute exists only
936933
when ``oob_score`` is True.
937934
935+
Examples
936+
--------
937+
>>> from sklearn.svm import SVR
938+
>>> from sklearn.ensemble import BaggingRegressor
939+
>>> from sklearn.datasets import make_regression
940+
>>> X, y = make_regression(n_samples=100, n_features=4,
941+
... n_informative=2, n_targets=1,
942+
... random_state=0, shuffle=False)
943+
>>> regr = BaggingRegressor(base_estimator=SVR(),
944+
... n_estimators=10, random_state=0).fit(X, y)
945+
>>> regr.predict([[0, 0, 0, 0]])
946+
array([-2.8720...])
947+
938948
References
939949
----------
940950

0 commit comments

Comments
 (0)
0