@@ -296,7 +296,7 @@ def test_sample(self, n=1000):
296
296
samples = h .sample (n )[0 ]
297
297
self .assertEquals (samples .shape , (n , self .n_features ))
298
298
299
- def test_fit (self , params = 'stmc' , n_iter = 25 , verbose = False , ** kwargs ):
299
+ def test_fit (self , params = 'stmc' , n_iter = 5 , verbose = False , ** kwargs ):
300
300
h = hmm .GaussianHMM (self .n_components , self .covariance_type )
301
301
h .startprob_ = self .startprob
302
302
h .transmat_ = hmm .normalize (self .transmat
@@ -337,7 +337,7 @@ def test_fit_works_on_sequences_of_different_length(self):
337
337
# ValueError: setting an array element with a sequence.
338
338
h .fit (obs )
339
339
340
- def test_fit_with_priors (self , params = 'stmc' , n_iter = 10 , verbose = False ):
340
+ def test_fit_with_priors (self , params = 'stmc' , n_iter = 5 , verbose = False ):
341
341
startprob_prior = 10 * self .startprob + 2.0
342
342
transmat_prior = 10 * self .transmat + 2.0
343
343
means_prior = self .means
@@ -471,7 +471,7 @@ def test_sample(self, n=1000):
471
471
self .assertEquals (len (samples ), n )
472
472
self .assertEquals (len (np .unique (samples )), self .n_symbols )
473
473
474
- def test_fit (self , params = 'ste' , n_iter = 15 , verbose = False , ** kwargs ):
474
+ def test_fit (self , params = 'ste' , n_iter = 5 , verbose = False , ** kwargs ):
475
475
h = self .h
476
476
477
477
# Create training data by sampling from the HMM.
0 commit comments