@@ -398,7 +398,7 @@ def _compute_core_distances_(X, neighbors, min_samples, working_memory):
398
398
def compute_optics_graph (
399
399
X , * , min_samples , max_eps , metric , p , metric_params , algorithm , leaf_size , n_jobs
400
400
):
401
- """Computes the OPTICS reachability graph.
401
+ """Compute the OPTICS reachability graph.
402
402
403
403
Read more in the :ref:`User Guide <optics>`.
404
404
@@ -621,7 +621,7 @@ def _set_reach_dist(
621
621
622
622
623
623
def cluster_optics_dbscan (* , reachability , core_distances , ordering , eps ):
624
- """Performs DBSCAN extraction for an arbitrary epsilon.
624
+ """Perform DBSCAN extraction for an arbitrary epsilon.
625
625
626
626
Extracting the clusters runs in linear time. Note that this results in
627
627
``labels_`` which are close to a :class:`~sklearn.cluster.DBSCAN` with
@@ -630,13 +630,13 @@ def cluster_optics_dbscan(*, reachability, core_distances, ordering, eps):
630
630
Parameters
631
631
----------
632
632
reachability : array of shape (n_samples,)
633
- Reachability distances calculated by OPTICS (``reachability_``)
633
+ Reachability distances calculated by OPTICS (``reachability_``).
634
634
635
635
core_distances : array of shape (n_samples,)
636
- Distances at which points become core (``core_distances_``)
636
+ Distances at which points become core (``core_distances_``).
637
637
638
638
ordering : array of shape (n_samples,)
639
- OPTICS ordered point indices (``ordering_``)
639
+ OPTICS ordered point indices (``ordering_``).
640
640
641
641
eps : float
642
642
DBSCAN ``eps`` parameter. Must be set to < ``max_eps``. Results
@@ -647,7 +647,6 @@ def cluster_optics_dbscan(*, reachability, core_distances, ordering, eps):
647
647
-------
648
648
labels_ : array of shape (n_samples,)
649
649
The estimated labels.
650
-
651
650
"""
652
651
n_samples = len (core_distances )
653
652
labels = np .zeros (n_samples , dtype = int )
0 commit comments