@@ -496,15 +496,15 @@ class PoissonRegressor(_GeneralizedLinearRegressor):
496
496
Parameters
497
497
----------
498
498
alpha : float, default=1
499
- Constant that multiplies the penalty term and thus determines the
499
+ Constant that multiplies the L2 penalty term and determines the
500
500
regularization strength. ``alpha = 0`` is equivalent to unpenalized
501
501
GLMs. In this case, the design matrix `X` must have full column rank
502
502
(no collinearities).
503
- Values must be in the range `[0.0, inf)`.
503
+ Values of `alpha` must be in the range `[0.0, inf)`.
504
504
505
505
fit_intercept : bool, default=True
506
506
Specifies if a constant (a.k.a. bias or intercept) should be
507
- added to the linear predictor (X @ coef + intercept).
507
+ added to the linear predictor (` X @ coef + intercept` ).
508
508
509
509
solver : {'lbfgs', 'newton-cholesky'}, default='lbfgs'
510
510
Algorithm to use in the optimization problem:
@@ -780,15 +780,15 @@ class TweedieRegressor(_GeneralizedLinearRegressor):
780
780
For ``0 < power < 1``, no distribution exists.
781
781
782
782
alpha : float, default=1
783
- Constant that multiplies the penalty term and thus determines the
783
+ Constant that multiplies the L2 penalty term and determines the
784
784
regularization strength. ``alpha = 0`` is equivalent to unpenalized
785
785
GLMs. In this case, the design matrix `X` must have full column rank
786
786
(no collinearities).
787
- Values must be in the range `[0.0, inf)`.
787
+ Values of `alpha` must be in the range `[0.0, inf)`.
788
788
789
789
fit_intercept : bool, default=True
790
790
Specifies if a constant (a.k.a. bias or intercept) should be
791
- added to the linear predictor (X @ coef + intercept).
791
+ added to the linear predictor (` X @ coef + intercept` ).
792
792
793
793
link : {'auto', 'identity', 'log'}, default='auto'
794
794
The link function of the GLM, i.e. mapping from linear predictor
0 commit comments