8000 DOC specify type of penalty in ``PoissonRegressor`` and ``TweedieRegr… · scikit-learn/scikit-learn@b728b2e · GitHub
[go: up one dir, main page]

Skip to content

Commit b728b2e

Browse files
authored
DOC specify type of penalty in PoissonRegressor and TweedieRegressor docstring (#24971)
1 parent 9c9c858 commit b728b2e

File tree

1 file changed

+6
-6
lines changed
  • sklearn/linear_model/_glm

1 file changed

+6
-6
lines changed

sklearn/linear_model/_glm/glm.py

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -496,15 +496,15 @@ class PoissonRegressor(_GeneralizedLinearRegressor):
496496
Parameters
497497
----------
498498
alpha : float, default=1
499-
Constant that multiplies the penalty term and thus determines the
499+
Constant that multiplies the L2 penalty term and determines the
500500
regularization strength. ``alpha = 0`` is equivalent to unpenalized
501501
GLMs. In this case, the design matrix `X` must have full column rank
502502
(no collinearities).
503-
Values must be in the range `[0.0, inf)`.
503+
Values of `alpha` must be in the range `[0.0, inf)`.
504504
505505
fit_intercept : bool, default=True
506506
Specifies if a constant (a.k.a. bias or intercept) should be
507-
added to the linear predictor (X @ coef + intercept).
507+
added to the linear predictor (`X @ coef + intercept`).
508508
509509
solver : {'lbfgs', 'newton-cholesky'}, default='lbfgs'
510510
Algorithm to use in the optimization problem:
@@ -780,15 +780,15 @@ class TweedieRegressor(_GeneralizedLinearRegressor):
780780
For ``0 < power < 1``, no distribution exists.
781781
782782
alpha : float, default=1
783-
Constant that multiplies the penalty term and thus determines the
783+
Constant that multiplies the L2 penalty term and determines the
784784
regularization strength. ``alpha = 0`` is equivalent to unpenalized
785785
GLMs. In this case, the design matrix `X` must have full column rank
786786
(no collinearities).
787-
Values must be in the range `[0.0, inf)`.
787+
Values of `alpha` must be in the range `[0.0, inf)`.
788788
789789
fit_intercept : bool, default=True
790790
Specifies if a constant (a.k.a. bias or intercept) should be
791-
added to the linear predictor (X @ coef + intercept).
791+
added to the linear predictor (`X @ coef + intercept`).
792792
793793
link : {'auto', 'identity', 'log'}, default='auto'
794794
The link function of the GLM, i.e. mapping from linear predictor

0 commit comments

Comments
 (0)
0