@@ -633,15 +633,15 @@ class Ridge(_BaseRidge, RegressorMixin):
633
633
to false, no intercept will be used in calculations
634
634
(e.g. data is expected to be already centered).
635
635
636
- normalize : boolean, optional , default=False
636
+ normalize : bool , default=False
637
637
This parameter is ignored when ``fit_intercept`` is set to False.
638
638
If True, the regressors X will be normalized before regression by
639
639
subtracting the mean and dividing by the l2-norm.
640
640
If you wish to standardize, please use
641
641
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
642
642
on an estimator with ``normalize=False``.
643
643
644
- copy_X : boolean, optional , default=True
644
+ copy_X : bool , default=True
645
645
If True, X will be copied; else, it may be overwritten.
646
646
647
647
max_iter : int, optional
@@ -783,15 +783,15 @@ class RidgeClassifier(LinearClassifierMixin, _BaseRidge):
783
783
intercept will be used in calculations (e.g. data is expected to be
784
784
already centered).
785
785
786
- normalize : boolean, optional , default=False
786
+ normalize : bool , default=False
787
787
This parameter is ignored when ``fit_intercept`` is set to False.
788
788
If True, the regressors X will be normalized before regression by
789
789
subtracting the mean and dividing by the l2-norm.
790
790
If you wish to standardize, please use
791
791
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
792
792
on an estimator with ``normalize=False``.
793
793
794
10000
- copy_X : boolean, optional , default=True
794
+ copy_X : bool , default=True
795
795
If True, X will be copied; else, it may be overwritten.
796
796
797
797
max_iter : int, optional
@@ -843,7 +843,7 @@ class RidgeClassifier(LinearClassifierMixin, _BaseRidge):
843
843
.. versionadded:: 0.19
844
844
SAGA solver.
845
845
846
- random_state : int, RandomState instance or None, optional, default=None
846
+ random_state : int, RandomState instance or None, default=None
847
847
The seed of the pseudo random number generator to use when shuffling
848
848
the data. If int, random_state is the seed used by the random number
849
849
generator; If RandomState instance, random_state is the random number
@@ -1600,15 +1600,15 @@ class RidgeCV(_BaseRidgeCV, RegressorMixin):
1600
1600
to false, no intercept will be used in calculations
1601
1601
(e.g. data is expected to be already centered).
1602
1602
1603
- normalize : boolean, optional , default=False
1603
+ normalize : bool , default=False
1604
1604
This parameter is ignored when ``fit_intercept`` is set to False.
1605
1605
If True, the regressors X will be normalized before regression by
1606
1606
subtracting the mean and dividing by the l2-norm.
1607
1607
If you wish to standardize, please use
1608
1608
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
1609
1609
on an estimator with ``normalize=False``.
1610
1610
1611
- scoring : string, callable or None, optional, default=None
1611
+ scoring : string, callable or None, default=None
1612
1612
A string (see model evaluation documentation) or
1613
1613
a scorer callable object / function with signature
1614
1614
``scorer(estimator, X, y)``.
@@ -1713,15 +1713,15 @@ class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV):
1713
1713
to false, no intercept will be used in calculations
1714
1714
(e.g. data is expected to be already centered).
1715
1715
1716
- normalize : boolean, optional , default=False
1716
+ normalize : bool , default=False
1717
1717
This parameter is ignored when ``fit_intercept`` is set to False.
1718
1718
If True, the regressors X will be normalized before regression by
1719
1719
subtracting the mean and dividing by the l2-norm.
1720
1720
If you wish to standardize, please use
1721
1721
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
1722
1722
on an estimator with ``normalize=False``.
1723
1723
1724
- scoring : string, callable or None, optional, default=None
1724
+ scoring : string, callable or None, default=None
1725
1725
A string (see model evaluation documentation) or
1726
1726
a scorer callable object / function with signature
1727
1727
``scorer(estimator, X, y)``.
0 commit comments