8000 Update ridge.py · scikit-learn/scikit-learn@a62bdf1 · GitHub
[go: up one dir, main page]

Skip to content

Commit a62bdf1

Browse files
authored
Update ridge.py
Replace `optional, default=...` docstrings with just `default=...`.
1 parent 8441bec commit a62bdf1

File tree

1 file changed

+9
-9
lines changed

1 file changed

+9
-9
lines changed

sklearn/linear_model/ridge.py

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -633,15 +633,15 @@ class Ridge(_BaseRidge, RegressorMixin):
633633
to false, no intercept will be used in calculations
634634
(e.g. data is expected to be already centered).
635635
636-
normalize : boolean, optional, default=False
636+
normalize : bool, default=False
637637
This parameter is ignored when ``fit_intercept`` is set to False.
638638
If True, the regressors X will be normalized before regression by
639639
subtracting the mean and dividing by the l2-norm.
640640
If you wish to standardize, please use
641641
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
642642
on an estimator with ``normalize=False``.
643643
644-
copy_X : boolean, optional, default=True
644+
copy_X : bool, default=True
645645
If True, X will be copied; else, it may be overwritten.
646646
647647
max_iter : int, optional
@@ -783,15 +783,15 @@ class RidgeClassifier(LinearClassifierMixin, _BaseRidge):
783783
intercept will be used in calculations (e.g. data is expected to be
784784
already centered).
785785
786-
normalize : boolean, optional, default=False
786+
normalize : bool, default=False
787787
This parameter is ignored when ``fit_intercept`` is set to False.
788788
If True, the regressors X will be normalized before regression by
789789
subtracting the mean and dividing by the l2-norm.
790790
If you wish to standardize, please use
791791
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
792792
on an estimator with ``normalize=False``.
793793
794 10000 -
copy_X : boolean, optional, default=True
794+
copy_X : bool, default=True
795795
If True, X will be copied; else, it may be overwritten.
796796
797797
max_iter : int, optional
@@ -843,7 +843,7 @@ class RidgeClassifier(LinearClassifierMixin, _BaseRidge):
843843
.. versionadded:: 0.19
844844
SAGA solver.
845845
846-
random_state : int, RandomState instance or None, optional, default=None
846+
random_state : int, RandomState instance or None, default=None
847847
The seed of the pseudo random number generator to use when shuffling
848848
the data. If int, random_state is the seed used by the random number
849849
generator; If RandomState instance, random_state is the random number
@@ -1600,15 +1600,15 @@ class RidgeCV(_BaseRidgeCV, RegressorMixin):
16001600
to false, no intercept will be used in calculations
16011601
(e.g. data is expected to be already centered).
16021602
1603-
normalize : boolean, optional, default=False
1603+
normalize : bool, default=False
16041604
This parameter is ignored when ``fit_intercept`` is set to False.
16051605
If True, the regressors X will be normalized before regression by
16061606
subtracting the mean and dividing by the l2-norm.
16071607
If you wish to standardize, please use
16081608
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
16091609
on an estimator with ``normalize=False``.
16101610
1611-
scoring : string, callable or None, optional, default=None
1611+
scoring : string, callable or None, default=None
16121612
A string (see model evaluation documentation) or
16131613
a scorer callable object / function with signature
16141614
``scorer(estimator, X, y)``.
@@ -1713,15 +1713,15 @@ class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV):
17131713
to false, no intercept will be used in calculations
17141714
(e.g. data is expected to be already centered).
17151715
1716-
normalize : boolean, optional, default=False
1716+
normalize : bool, default=False
17171717
This parameter is ignored when ``fit_intercept`` is set to False.
17181718
If True, the regressors X will be normalized before regression by
17191719
subtracting the mean and dividing by the l2-norm.
17201720
If you wish to standardize, please use
17211721
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
17221722
on an estimator with ``normalize=False``.
17231723
1724-
scoring : string, callable or None, optional, default=None
1724+
scoring : string, callable or None, default=None
17251725
A string (see model evaluation documentation) or
17261726
a scorer callable object / function with signature
17271727
``scorer(estimator, X, y)``.

0 commit comments

Comments
 (0)
0