@@ -18,27 +18,15 @@ def test_kernel_ridge():
18
18
assert_array_almost_equal (pred , pred2 )
19
19
20
20
21
- @pytest .mark .parametrize ("csr_container " , CSR_CONTAINERS )
22
- def test_kernel_ridge_csr ( csr_container ):
23
- Xcsr = csr_container (X )
21
+ @pytest .mark .parametrize ("sparse_container " , [ * CSR_CONTAINERS , * CSC_CONTAINERS ] )
22
+ def test_kernel_ridge_sparse ( sparse_container ):
23
+ X_sparse = sparse_container (X )
24
24
pred = (
25
25
Ridge (alpha = 1 , fit_intercept = False , solver = "cholesky" )
26
- .fit (Xcsr , y )
27
- .predict (Xcsr )
26
+ .fit (X_sparse , y )
27
+ .predict (X_sparse )
28
28
)
29
- pred2 = KernelRidge (kernel = "linear" , alpha = 1 ).fit (Xcsr , y ).predict (Xcsr )
30
- assert_array_almost_equal (pred , pred2 )
31
-
32
-
33
- @pytest .mark .parametrize ("csc_container" , CSC_CONTAINERS )
34
- def test_kernel_ridge_csc (csc_container ):
35
- Xcsc = csc_container (X )
36
- pred = (
37
- Ridge (alpha = 1 , fit_intercept = False , solver = "cholesky" )
38
- .fit (Xcsc , y )
39
- .predict (Xcsc )
40
- )
41
- pred2 = KernelRidge (kernel = "linear" , alpha = 1 ).fit (Xcsc , y ).predict (Xcsc )
29
+ pred2 = KernelRidge (kernel = "linear" , alpha = 1 ).fit (X_sparse , y ).predict (X_sparse )
42
30
assert_array_almost_equal (pred , pred2 )
43
31
44
32
0 commit comments