8000 DOC Ensures that QuadraticDiscriminantAnalysis passes numpydoc valida… · scikit-learn/scikit-learn@a343963 · GitHub
[go: up one dir, main page]

Skip to content

Commit a343963

Browse files
authored
DOC Ensures that QuadraticDiscriminantAnalysis passes numpydoc validation (#21346)
1 parent b19befd commit a343963

File tree

2 files changed

+14
-7
lines changed

2 files changed

+14
-7
lines changed

maint_tools/test_docstrings.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,6 @@
2525
"OrthogonalMatchingPursuit",
2626
"OrthogonalMatchingPursuitCV",
2727
"PassiveAggressiveRegressor",
28-
"QuadraticDiscriminantAnalysis",
2928
"SparseRandomProjection",
3029
"SpectralBiclustering",
3130
"SpectralCoclustering",

sklearn/discriminant_analysis.py

Lines changed: 14 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -707,7 +707,7 @@ def decision_function(self, X):
707707

708708

709709
class QuadraticDiscriminantAnalysis(ClassifierMixin, BaseEstimator):
710-
"""Quadratic Discriminant Analysis
710+
"""Quadratic Discriminant Analysis.
711711
712712
A classifier with a quadratic decision boundary, generated
713713
by fitting class conditional densities to the data
@@ -790,6 +790,10 @@ class QuadraticDiscriminantAnalysis(ClassifierMixin, BaseEstimator):
790790
791791
.. versionadded:: 1.0
792792
793+
See Also
794+
--------
795+
LinearDiscriminantAnalysis : Linear Discriminant Analysis.
796+
793797
Examples
794798
--------
795799
>>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
@@ -801,10 +805,6 @@ class QuadraticDiscriminantAnalysis(ClassifierMixin, BaseEstimator):
801805
QuadraticDiscriminantAnalysis()
802806
>>> print(clf.predict([[-0.8, -1]]))
803807
[1]
804-
805-
See Also
806-
--------
807-
LinearDiscriminantAnalysis : Linear Discriminant Analysis.
808808
"""
809809

810810
def __init__(
@@ -832,7 +832,12 @@ def fit(self, X, y):
832832
`n_features` is the number of features.
833833
834834
y : array-like of shape (n_samples,)
835-
Target values (integers)
835+
Target values (integers).
836+
837+
Returns
838+
-------
839+
self : object
840+
Fitted estimator.
836841
"""
837842
X, y = self._validate_data(X, y)
838843
check_classification_targets(y)
@@ -935,10 +940,13 @@ def predict(self, X):
935940
Parameters
936941
----------
937942
X : array-like of shape (n_samples, n_features)
943+
Vector to be scored, where `n_samples` is the number of samples and
944+
`n_features` is the number of features.
938945
939946
Returns
940947
-------
941948
C : ndarray of shape (n_samples,)
949+
Estimated probabilities.
942950
"""
943951
d = self._decision_function(X)
944952
y_pred = self.classes_.take(d.argmax(1))

0 commit comments

Comments
 (0)
0