@@ -707,7 +707,7 @@ def decision_function(self, X):
707
707
708
708
709
709
class QuadraticDiscriminantAnalysis (ClassifierMixin , BaseEstimator ):
710
- """Quadratic Discriminant Analysis
710
+ """Quadratic Discriminant Analysis.
711
711
712
712
A classifier with a quadratic decision boundary, generated
713
713
by fitting class conditional densities to the data
@@ -790,6 +790,10 @@ class QuadraticDiscriminantAnalysis(ClassifierMixin, BaseEstimator):
790
790
791
791
.. versionadded:: 1.0
792
792
793
+ See Also
794
+ --------
795
+ LinearDiscriminantAnalysis : Linear Discriminant Analysis.
796
+
793
797
Examples
794
798
--------
795
799
>>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
@@ -801,10 +805,6 @@ class QuadraticDiscriminantAnalysis(ClassifierMixin, BaseEstimator):
801
805
QuadraticDiscriminantAnalysis()
802
806
>>> print(clf.predict([[-0.8, -1]]))
803
807
[1]
804
-
805
- See Also
806
- --------
807
- LinearDiscriminantAnalysis : Linear Discriminant Analysis.
808
808
"""
809
809
810
810
def __init__ (
@@ -832,7 +832,12 @@ def fit(self, X, y):
832
832
`n_features` is the number of features.
833
833
834
834
y : array-like of shape (n_samples,)
835
- Target values (integers)
835
+ Target values (integers).
836
+
837
+ Returns
838
+ -------
839
+ self : object
840
+ Fitted estimator.
836
841
"""
837
842
X , y = self ._validate_data (X , y )
838
843
check_classification_targets (y )
@@ -935,10 +940,13 @@ def predict(self, X):
935
940
Parameters
936
941
----------
937
942
X : array-like of shape (n_samples, n_features)
943
+ Vector to be scored, where `n_samples` is the number of samples and
944
+ `n_features` is the number of features.
938
945
939
946
Returns
940
947
-------
941
948
C : ndarray of shape (n_samples,)
949
+ Estimated probabilities.
942
950
"""
943
951
d = self ._decision_function (X )
944
952
y_pred = self .classes_ .take (d .argmax (1 ))
0 commit comments