@@ -43,34 +43,34 @@ def _alpha_grid(X, y, Xy=None, l1_ratio=1.0, fit_intercept=True,
43
43
y : ndarray, shape (n_samples,)
44
44
Target values
45
45
46
- Xy : array-like, optional
46
+ Xy : array-like, default=None
47
47
Xy = np.dot(X.T, y) that can be precomputed.
48
48
49
- l1_ratio : float
49
+ l1_ratio : float, default=1.0
50
50
The elastic net mixing parameter, with ``0 < l1_ratio <= 1``.
51
51
For ``l1_ratio = 0`` the penalty is an L2 penalty. (currently not
52
52
supported) ``For l1_ratio = 1`` it is an L1 penalty. For
53
53
``0 < l1_ratio <1``, the penalty is a combination of L1 and L2.
54
54
55
- eps : float, optional
55
+ eps : float, default=1e-3
56
56
Length of the path. ``eps=1e-3`` means that
57
57
``alpha_min / alpha_max = 1e-3``
58
58
59
- n_alphas : int, optional
59
+ n_alphas : int, default=100
60
60
Number of alphas along the regularization path
61
61
62
- fit_intercept : boolean, default True
62
+ fit_intercept : boolean, default= True
63
63
Whether to fit an intercept or not
64
64
65
- normalize : boolean, optional, default False
65
+ normalize : boolean, default= False
66
66
This parameter is ignored when ``fit_intercept`` is set to False.
67
67
If True, the regressors X will be normalized before regression by
68
68
subtracting the mean and dividing by the l2-norm.
69
69
If you wish to standardize, please use
70
70
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
71
71
on an estimator with ``normalize=False``.
72
72
73
- copy_X : boolean, optional, default True
73
+ copy_X : boolean, optional, default= True
74
74
If ``True``, X will be copied; else, it may be overwritten.
75
75
"""
76
76
if l1_ratio == 0 :
0 commit comments