@@ -60,8 +60,8 @@ def contingency_matrix(labels_true, labels_pred, eps=None, max_n_classes=5000):
60
60
matrix. This helps to stop NaN propagation.
61
61
If ``None``, nothing is adjusted.
62
62
63
- max_n_classes: int
64
- Maximal number of classes handled for contingency_matrix.
63
+ max_n_classes : int, optional (default=5000)
64
+ Maximal number of classeses handled for contingency_matrix.
65
65
This help to avoid Memory error with regression target
66
66
for mutual_information.
67
67
@@ -132,8 +132,8 @@ def adjusted_rand_score(labels_true, labels_pred, max_n_classes=5000):
132
132
labels_pred : array, shape = [n_samples]
133
133
Cluster labels to evaluate
134
134
135
- max_n_classes : int
136
- Maximal number of class handled by the adjusted_rand_score
135
+ max_n_classes: int, optional (default=5000)
136
+ Maximal number of classes handled by the adjusted_rand_score
137
137
metric. Setting it too high can lead to MemoryError or OS
138
138
freeze
139
139
@@ -246,8 +246,8 @@ def homogeneity_completeness_v_measure(labels_true, labels_pred,
246
246
labels_pred : array, shape = [n_samples]
247
247
cluster labels to evaluate
248
248
249
- max_n_classes : int
250
- Maximal number of class handled by the adjusted_rand_score
249
+ max_n_classes: int, optional (default=5000)
250
+ Maximal number of classes handled by the adjusted_rand_score
251
251
metric. Setting it too high can lead to MemoryError or OS
252
252
freeze
253
253
@@ -315,8 +315,8 @@ def homogeneity_score(labels_true, labels_pred, max_n_classes=5000):
315
315
labels_pred : array, shape = [n_samples]
316
316
cluster labels to evaluate
317
317
318
- max_n_classes : int
319
- Maximal number of class handled by the adjusted_rand_score
318
+ max_n_classes: int, optional (default=5000)
319
+ Maximal number of classes handled by the adjusted_rand_score
320
320
metric. Setting it too high can lead to MemoryError or OS
321
321
freeze
322
322
@@ -395,8 +395,8 @@ def completeness_score(labels_true, labels_pred, max_n_classes=5000):
395
395
labels_pred : array, shape = [n_samples]
396
396
cluster labels to evaluate
397
397
398
- max_n_classes : int
399
- Maximal number of class handled by the adjusted_rand_score
398
+ max_n_classes: int, optional (default=5000)
399
+ Maximal number of classes handled by the adjusted_rand_score
400
400
metric. Setting it too high can lead to MemoryError or OS
401
401
freeze
402
402
@@ -475,8 +475,8 @@ def v_measure_score(labels_true, labels_pred, max_n_classes=5000):
475
475
labels_pred : array, shape = [n_samples]
476
476
cluster labels to evaluate
477
477
478
- max_n_classes : int
479
- Maximal number of class handled by the adjusted_rand_score
478
+ max_n_classes: int, optional (default=5000)
479
+ Maximal number of classes handled by the adjusted_rand_score
480
480
metric. Setting it too high can lead to MemoryError or OS
481
481
freeze
482
482
@@ -589,8 +589,8 @@ def mutual_info_score(labels_true, labels_pred, contingency=None,
589
589
If value is ``None``, it will be computed, otherwise the given value is
590
590
used, with ``labels_true`` and ``labels_pred`` ignored.
591
591
592
- max_n_classes : int
593
- Maximal number of class handled by the mutual_info_score
592
+ max_n_classes: int, optional (default=5000)
593
+ Maximal number of classes handled by the mutual_info_score
594
594
metric. Setting it too high can lead to MemoryError or OS
595
595
freeze
596
596
@@ -659,8 +659,8 @@ def adjusted_mutual_info_score(labels_true, labels_pred, max_n_classes=5000):
659
659
labels_pred : array, shape = [n_samples]
660
660
A clustering of the data into disjoint subsets.
661
661
662
- max_n_classes : int
663
- Maximal number of class handled by the adjusted_rand_score
662
+ max_n_classes: int, optional (default=5000)
663
+ Maximal number of classes handled by the adjusted_rand_score
664
664
metric. Setting it too high can lead to MemoryError or OS
665
665
freeze
666
666
@@ -758,8 +758,8 @@ def normalized_mutual_info_score(labels_true, labels_pred, max_n_classes=5000):
758
758
labels_pred : array, shape = [n_samples]
759
759
A clustering of the data into disjoint subsets.
760
760
761
- max_n_classes : int
762
- Maximal number of class handled by the adjusted_rand_score
761
+ max_n_classes: int, optional (default=5000)
762
+ Maximal number of classes handled by the adjusted_rand_score
763
763
metric. Setting it too high can lead to MemoryError or OS
764
764
freeze
765
765
0 commit comments