@@ -166,7 +166,7 @@ class PCA(_BasePCA):
166
166
167
167
.. versionadded:: 0.18.0
168
168
169
- iterated_power : int >= 0, optional (default 4 )
169
+ iterated_power : int >= 0, or 'auto', (default 'auto' )
170
170
Number of iterations for the power method computed by
171
171
svd_solver == 'randomized'.
172
172
@@ -240,21 +240,21 @@ class PCA(_BasePCA):
240
240
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
241
241
>>> pca = PCA(n_components=2)
242
242
>>> pca.fit(X)
243
- PCA(copy=True, iterated_power=4 , n_components=2, random_state=None,
243
+ PCA(copy=True, iterated_power='auto' , n_components=2, random_state=None,
244
244
svd_solver='auto', tol=0.0, whiten=False)
245
245
>>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS
246
246
[ 0.99244... 0.00755...]
247
247
248
248
>>> pca = PCA(n_components=2, svd_solver='full')
249
249
>>> pca.fit(X) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
250
- PCA(copy=True, iterated_power=4 , n_components=2, random_state=None,
250
+ PCA(copy=True, iterated_power='auto' , n_components=2, random_state=None,
251
251
svd_solver='full', tol=0.0, whiten=False)
252
252
>>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS
253
253
[ 0.99244... 0.00755...]
254
254
255
255
>>> pca = PCA(n_components=1, svd_solver='arpack')
256
256
>>> pca.fit(X)
257
- PCA(copy=True, iterated_power=4 , n_components=1, random_state=None,
257
+ PCA(copy=True, iterated_power='auto' , n_components=1, random_state=None,
258
258
svd_solver='arpack', tol=0.0, whiten=False)
259
259
>>> print(pca.explained_variance_ratio_) # doctest: +ELLIPSIS
260
260
[ 0.99244...]
@@ -268,7 +268,7 @@ class PCA(_BasePCA):
268
268
"""
269
269
270
270
def __init__ (self , n_components = None , copy = True , whiten = False ,
271
- svd_solver = 'auto' , tol = 0.0 , iterated_power = 4 ,
271
+ svd_solver = 'auto' , tol = 0.0 , iterated_power = 'auto' ,
272
272
random_state = None ):
273
273
self .n_components = n_components
274
274
self .copy = copy
@@ -535,8 +535,8 @@ class RandomizedPCA(BaseEstimator, TransformerMixin):
535
535
fit(X).transform(X) will not yield the expected results,
536
536
use fit_transform(X) instead.
537
537
538
- iterated_power : int, optional
539
- Number of iterations for the power method. 2 by default.
538
+ iterated_power : int, default=2
539
+ Number of iterations for the power method.
540
540
541
541
.. versionchanged:: 0.18
542
542
0 commit comments