|
9 | 9 | covertype dataset, the feature space is homogenous.
|
10 | 10 |
|
11 | 11 | Example of output :
|
12 |
| -
|
13 | 12 | [..]
|
| 13 | +
|
14 | 14 | Classification performance:
|
15 | 15 | ===========================
|
16 |
| - Classifier train-time test-time error-rat |
| 16 | + Classifier train-time test-time error-rate |
17 | 17 | ------------------------------------------------------------
|
18 |
| - Nystroem-SVM 105.07s 0.91s 0.0227 |
19 |
| - ExtraTrees 48.20s 1.22s 0.0288 |
20 |
| - RandomForest 47.17s 1.21s 0.0304 |
21 |
| - SampledRBF-SVM 140.45s 0.84s 0.0486 |
22 |
| - CART 22.84s 0.16s 0.1214 |
23 |
| - dummy 0.01s 0.02s 0.8973 |
24 |
| -
|
| 18 | + MLP_adam 53.46s 0.11s 0.0224 |
| 19 | + Nystroem-SVM 112.97s 0.92s 0.0228 |
| 20 | + MultilayerPerceptron 24.33s 0.14s 0.0287 |
| 21 | + ExtraTrees 42.99s 0.57s 0.0294 |
| 22 | + RandomForest 42.70s 0.49s 0.0318 |
| 23 | + SampledRBF-SVM 135.81s 0.56s 0.0486 |
| 24 | + LinearRegression-SAG 16.67s 0.06s 0.0824 |
| 25 | + CART 20.69s 0.02s 0.1219 |
| 26 | + dummy 0.00s 0.01s 0.8973 |
25 | 27 | """
|
26 | 28 | from __future__ import division, print_function
|
27 | 29 |
|
|
48 | 50 | from sklearn.tree import DecisionTreeClassifier
|
49 | 51 | from sklearn.utils import check_array
|
50 | 52 | from sklearn.linear_model import LogisticRegression
|
| 53 | +from sklearn.neural_network import MLPClassifier |
51 | 54 |
|
52 | 55 | # Memoize the data extraction and memory map the resulting
|
53 | 56 | # train / test splits in readonly mode
|
@@ -84,11 +87,19 @@ def load_data(dtype=np.float32, order='F'):
|
84 | 87 | 'CART': DecisionTreeClassifier(),
|
85 | 88 | 'ExtraTrees': ExtraTreesClassifier(n_estimators=100),
|
86 | 89 | 'RandomForest': RandomForestClassifier(n_estimators=100),
|
87 |
| - 'Nystroem-SVM': |
88 |
| - make_pipeline(Nystroem(gamma=0.015, n_components=1000), LinearSVC(C=100)), |
89 |
| - 'SampledRBF-SVM': |
90 |
| - make_pipeline(RBFSampler(gamma=0.015, n_components=1000), LinearSVC(C=100)), |
91 |
| - 'LinearRegression-SAG': LogisticRegression(solver='sag', tol=1e-1, C=1e4) |
| 90 | + 'Nystroem-SVM': make_pipeline( |
| 91 | + Nystroem(gamma=0.015, n_components=1000), LinearSVC(C=100)), |
| 92 | + 'SampledRBF-SVM': make_pipeline( |
| 93 | + RBFSampler(gamma=0.015, n_components=1000), LinearSVC(C=100)), |
| 94 | + 'LinearRegression-SAG': LogisticRegression(solver='sag', tol=1e-1, C=1e4), |
| 95 | + 'MultilayerPerceptron': MLPClassifier( |
| 96 | + hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4, |
| 97 | + algorithm='sgd', learning_rate_init=0.2, momentum=0.9, verbose=1, |
| 98 | + tol=1e-4, random_state=1), |
| 99 | + 'MLP-adam': MLPClassifier( |
| 100 | + hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4, |
| 101 | + algorithm='adam', learning_rate_init=0.001, verbose=1, |
| 102 | + tol=1e-4, random_state=1) |
92 | 103 | }
|
93 | 104 |
|
94 | 105 |
|
|
0 commit comments