@@ -408,8 +408,8 @@ def predict(self, X, **predict_params):
408
408
409
409
# %%
410
410
# - Alias only on the sub-estimator. This is useful if we don't want the
411
- # meta-estimator to use the metadata, and we only want the metadata to be used
412
- # by the sub-estimator.
411
+ # meta-estimator to use the metadata, and we only want the metadata to be used
412
+ # by the sub-estimator.
413
413
est = RouterConsumerClassifier (
414
414
estimator = ExampleClassifier ().set_fit_request (sample_weight = "aliased_sample_weight" )
415
415
).set_fit_request (sample_weight = True )
@@ -621,9 +621,10 @@ def predict(self, X):
621
621
# want to have a scikit-learn compatible estimator, without depending on the
622
622
# scikit-learn package. If the following conditions are met, you do NOT need to
623
623
# modify your code at all:
624
- # - your estimator inherits from :class:`~base.BaseEstimator`
625
- # - the parameters consumed by your estimator's methods, e.g. ``fit``, are
626
- # explicitly defined in the method's signature, as opposed to being
627
- # ``*args`` or ``*kwargs``.
628
- # - you do not route any metadata to the underlying objects, i.e. you're not a
629
- # *router*.
624
+ #
625
+ # - your estimator inherits from :class:`~base.BaseEstimator`
626
+ # - the parameters consumed by your estimator's methods, e.g. ``fit``, are
627
+ # explicitly defined in the method's signature, as opposed to being
628
+ # ``*args`` or ``*kwargs``.
629
+ # - you do not route any metadata to the underlying objects, i.e. you're not a
630
+ # *router*.
0 commit comments