|
26 | 26 | from . import (r2_score, median_absolute_error, mean_absolute_error,
|
27 | 27 | mean_squared_error, mean_squared_log_error, accuracy_score,
|
28 | 28 | f1_score, roc_auc_score, average_precision_score,
|
29 |
| - precision_score, recall_score, log_loss, balanced_accuracy_score, |
30 |
| - explained_variance_score, brier_score_loss) |
| 29 | + precision_score, recall_score, log_loss, |
| 30 | + balanced_accuracy_score, explained_variance_score, |
| 31 | + brier_score_loss) |
31 | 32 |
|
32 | 33 | from .cluster import adjusted_rand_score
|
33 | 34 | from .cluster import homogeneity_score
|
@@ -96,9 +97,32 @@ def __call__(self, estimator, X, y_true, sample_weight=None):
|
96 | 97 | score : float
|
97 | 98 | Score function applied to prediction of estimator on X.
|
98 | 99 | """
|
99 |
| - super(_PredictScorer, self).__call__(estimator, X, y_true, |
100 |
| - sample_weight=sample_weight) |
101 | 100 | y_pred = estimator.predict(X)
|
| 101 | + return self.score_predict(y_pred, y_true, sample_weight) |
| 102 | + |
| 103 | + def score_predict(self, y_pred, y_true, sample_weight=None): |
| 104 | + """Evaluate predicted target values y_pred relative to y_true. |
| 105 | +
|
| 106 | + Parameters |
| 107 | + ---------- |
| 108 | + y_pred : array-like |
| 109 | + Prodicted values for y. |
| 110 | +
|
| 111 | + y_true : array-like |
| 112 | + Gold standard target values for y. |
| 113 | +
|
| 114 | + sample_weight : array-like, optional (default=None) |
| 115 | + Sample weights. |
| 116 | +
|
| 117 | + Returns |
| 118 | + ------- |
| 119 | + score : float |
| 120 | + Score function applied to prediction of estimator on X. |
| 121 | + """ |
| 122 | + # We call __call__ with no arguments as it only serves to show |
| 123 | + # deprecation warnings. |
| 124 | + super(_PredictScorer, self).__call__(None, None, None, |
| 125 | + sample_weight=sample_weight) |
102 | 126 | if sample_weight is not None:
|
103 | 127 | return self._sign * self._score_func(y_true, y_pred,
|
104 | 128 | sample_weight=sample_weight,
|
@@ -133,21 +157,49 @@ def __call__(self, clf, X, y, sample_weight=None):
|
133 | 157 | score : float
|
134 | 158 | Score function applied to prediction of estimator on X.
|
135 | 159 | """
|
136 |
| - super(_ProbaScorer, self).__call__(clf, X, y, |
137 |
| - sample_weight=sample_weight) |
138 |
| - y_type = type_of_target(y) |
139 | 160 | y_pred = clf.predict_proba(X)
|
| 161 | + |
| 162 | + return self.score_predict(y_pred, y, sample_weight) |
| 163 | + |
| 164 | + def _factory_args(self): |
| 165 | + return ", needs_proba=True" |
| 166 | + |
| 167 | + def score_predict(self, y_pred, y_true, sample_weight=None): |
| 168 | + """Evaluate predicted y_pred relative to y_true. |
| 169 | +
|
| 170 | + Parameters |
| 171 | + ---------- |
| 172 | + y_pred : array-like |
| 173 | + Predicted values for y by a classifier. These must be class labels, |
| 174 | + not probabilities. |
| 175 | +
|
| 176 | + y_true : array-like |
| 177 | + Gold standard target values for y. These must be class labels, |
| 178 | + not probabilities. |
| 179 | +
|
| 180 | + sample_weight : array-like, optional (default=None) |
| 181 | + Sample weights. |
| 182 | +
|
| 183 | + Returns |
| 184 | + ------- |
| 185 | + score : float |
| 186 | + Score function applied to prediction of estimator on X. |
| 187 | + """ |
| 188 | + # We call __call__ with no arguments as it only serves to show |
| 189 | + # deprecation warnings. |
| 190 | + super(_ProbaScorer, self).__call__(None, None, None, |
| 191 | + sample_weight=sample_weight) |
| 192 | + y_type = type_of_target(y_true) |
140 | 193 | if y_type == "binary":
|
141 | 194 | y_pred = y_pred[:, 1]
|
142 | 195 | if sample_weight is not None:
|
143 |
| - return self._sign * self._score_func(y, y_pred, |
| 196 | + return self._sign * self._score_func(y_true, y_pred, |
144 | 197 | sample_weight=sample_weight,
|
145 | 198 | **self._kwargs)
|
146 | 199 | else:
|
147 |
| - return self._sign * self._score_func(y, y_pred, **self._kwargs) |
148 |
| - |
149 |
| - def _factory_args(self): |
150 |
| - return ", needs_proba=True" |
| 200 | + return self._sign * self._score_func(y_true, |
| 201 | + y_pred, |
| 202 | + **self._kwargs) |
151 | 203 |
|
152 | 204 |
|
153 | 205 | class _ThresholdScorer(_BaseScorer):
|
|
0 commit comments