8000 nitpicks · scikit-learn/scikit-learn@93c3033 · GitHub
[go: up one dir, main page]

Skip to content

Commit 93c3033

Browse files
committed
nitpicks
1 parent a8880f1 commit 93c3033

File tree

1 file changed

+6
-8
lines changed

1 file changed

+6
-8
lines changed

doc/modules/linear_model.rst

Lines changed: 6 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -305,13 +305,11 @@ The objective function to minimize is:
305305

306306
.. math:: \underset{w}{min\,} { \frac{1}{2n_{samples}} ||X W - Y||_{Fro} ^ 2 + \alpha ||W||_{21}}
307307

308-
where;
309-
310-
:math:`Fro` indicates the Frobenius norm:
308+
where :math:`Fro` indicates the Frobenius norm:
311309

312310
.. math:: ||A||_{Fro} = \sqrt{\sum_{ij} a_{ij}^2}
313311

314-
and
312+
and :math:`\ell_1` :math:`\ell_2` reads:
315313

316314
.. math:: ||A||_{2 1} = \sum_i \sqrt{\sum_j a_{ij}^2}
317315

@@ -366,18 +364,18 @@ Multi-task Elastic Net
366364
======================
367365

368366
The :class:`MultiTaskElasticNet` is an elastic-net model that estimates sparse
369-
coefficients for multiple regression problems jointly: ``y`` is a 2D array,
367+
coefficients for multiple regression problems jointly: ``Y`` is a 2D array,
370368
of shape ``(n_samples, n_tasks)``. The constraint is that the selected
371369
features are the same for all the regression problems, also called tasks.
372370

373371
Mathematically, it consists of a linear model trained with a mixed
374-
:math:`\ell_1` :math:`\ell_2` prior as regularizer.
372+
:math:`\ell_1` :math:`\ell_2` prior and :math:`\ell_2` prior as regularizer.
375373
The objective function to minimize is:
376374

377375
.. math::
378376
379-
\underset{w}{min\,} { \frac{1}{2n_{samples}} ||X w - y||_{Fro}^2 + \alpha \rho ||w||_{2 1} +
380-
\frac{\alpha(1-\rho)}{2} ||w||_{Fro}^2}
377+
\underset{W}{min\,} { \frac{1}{2n_{samples}} ||X W - Y||_{Fro}^2 + \alpha \rho ||W||_{2 1} +
378+
\frac{\alpha(1-\rho)}{2} ||W||_{Fro}^2}
381379
382380
The implementation in the class :class:`MultiTaskElasticNet` uses coordinate descent as
383381
the algorithm to fit the coefficients.

0 commit comments

Comments
 (0)
0