|
32 | 32 | --------
|
33 | 33 | >>> from sklearn import datasets
|
34 | 34 | >>> from sklearn.semi_supervised import LabelPropagation
|
35 |
| ->>> label_prop_model = LabelPropagation() |
| 35 | +>>> label_prop_model = LabelPropagation(max_iter=1000) |
36 | 36 | >>> iris = datasets.load_iris()
|
37 | 37 | >>> random_unlabeled_points = np.where(np.random.randint(0, 2,
|
38 | 38 | ... size=len(iris.target)))
|
@@ -359,7 +359,7 @@ class LabelPropagation(BaseLabelPropagation):
|
359 | 359 | --------
|
360 | 360 | >>> from sklearn import datasets
|
361 | 361 | >>> from sklearn.semi_supervised import LabelPropagation
|
362 |
| - >>> label_prop_model = LabelPropagation() |
| 362 | + >>> label_prop_model = LabelPropagation(max_iter=1000) |
363 | 363 | >>> iris = datasets.load_iris()
|
364 | 364 | >>> random_unlabeled_points = np.where(np.random.randint(0, 2,
|
365 | 365 | ... size=len(iris.target)))
|
@@ -476,7 +476,7 @@ class LabelSpreading(BaseLabelPropagation):
|
476 | 476 | --------
|
477 | 477 | >>> from sklearn import datasets
|
478 | 478 | >>> from sklearn.semi_supervised import LabelSpreading
|
479 |
| - >>> label_prop_model = LabelSpreading() |
| 479 | + >>> label_prop_model = LabelSpreading(max_iter=1000) |
480 | 480 | >>> iris = datasets.load_iris()
|
481 | 481 | >>> random_unlabeled_points = np.where(np.random.randint(0, 2,
|
482 | 482 | ... size=len(iris.target)))
|
|
0 commit comments