8000 Fix numpydoc format for sklearn.model_selection._validation.numpydoc_… · scikit-learn/scikit-learn@92544c7 · GitHub
[go: up one dir, main page]

Skip to content

Commit 92544c7

Browse files
iofallarisayosh
andauthored
Fix numpydoc format for sklearn.model_selection._validation.numpydoc_validation_cross_val_predict (#21433)
Co-authored-by: iofall <50991099+iofall@users.noreply.github.com> Co-authored-by: arisayosh <15692997+arisayosh@users.noreply.github.com>
1 parent e4a0bfc commit 92544c7

File tree

2 files changed

+2
-3
lines changed

2 files changed

+2
-3
lines changed

maint_tools/test_docstrings.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -174,7 +174,6 @@
174174
"sklearn.metrics.pairwise.sigmoid_kernel",
175175
"sklearn.model_selection._split.check_cv",
176176
"sklearn.model_selection._split.train_test_split",
177-
"sklearn.model_selection._validation.cross_val_predict",
178177
"sklearn.model_selection._validation.cross_val_score",
179178
"sklearn.model_selection._validation.cross_validate",
180179
"sklearn.model_selection._validation.learning_curve",

sklearn/model_selection/_validation.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -815,7 +815,7 @@ def cross_val_predict(
815815
pre_dispatch="2*n_jobs",
816816
method="predict",
817817
):
818-
"""Generate cross-validated estimates for each input data point
818+
"""Generate cross-validated estimates for each input data point.
819819
820820
The data is split according to the cv parameter. Each sample belongs
821821
to exactly one test set, and its prediction is computed with an
@@ -853,7 +853,7 @@ def cross_val_predict(
853853
- None, to use the default 5-fold cross validation,
854854
- int, to specify the number of folds in a `(Stratified)KFold`,
855855
- :term:`CV splitter`,
856-
- An iterable yielding (train, test) splits as arrays of indices.
856+
- An iterable that generates (train, test) splits as arrays of indices.
857857
858858
For int/None inputs, if the estimator is a classifier and ``y`` is
859859
either binary or multiclass, :class:`StratifiedKFold` is used. In all

0 commit comments

Comments
 (0)
0