@@ -367,7 +367,7 @@ def k_means(X, n_clusters, sample_weight=None, init='k-means++',
367
367
else :
368
368
raise ValueError ("Algorithm must be 'auto', 'full' or 'elkan', got"
369
369
" %s" % str (algorithm ))
370
- if effective_n_jobs (n_jobs ):
370
+ if effective_n_jobs (n_jobs ) == 1 :
371
371
# For a single thread, less memory is needed if we just store one set
372
372
# of the best results (as opposed to one set per run per thread).
373
373
for it in range (n_init ):
@@ -868,15 +868,15 @@ class KMeans(BaseEstimator, ClusterMixin, TransformerMixin):
868
868
>>> from sklearn.cluster import KMeans
869
869
>>> import numpy as np
870
870
>>> X = np.array([[1, 2], [1, 4], [1, 0],
871
- ... [4 , 2], [4 , 4], [4 , 0]])
871
+ ... [10 , 2], [10 , 4], [10 , 0]])
872
872
>>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
873
873
>>> kmeans.labels_
874
- array([0, 0, 0, 1, 1, 1 ], dtype=int32)
875
- >>> kmeans.predict([[0, 0], [4, 4 ]])
876
- array([0, 1 ], dtype=int32)
874
+ array([1, 1, 1, 0, 0, 0 ], dtype=int32)
875
+ >>> kmeans.predict([[0, 0], [12, 3 ]])
876
+ array([1, 0 ], dtype=int32)
877
877
>>> kmeans.cluster_centers_
878
- array([[1., 2.],
879
- [4., 2.]])
878
+ array([[10., 2.],
879
+ [ 1., 2.]])
880
880
881
881
See also
882
882
--------
0 commit comments