|
80 | 80 | est = make_pipeline(
|
81 | 81 | QuantileTransformer(),
|
82 | 82 | MLPRegressor(
|
83 |
| - hidden_layer_sizes=(50, 50), learning_rate_init=0.01, early_stopping=True |
| 83 | + hidden_layer_sizes=(30, 15), |
| 84 | + learning_rate_init=0.01, |
| 85 | + early_stopping=True, |
| 86 | + random_state=0, |
84 | 87 | ),
|
85 | 88 | )
|
86 | 89 | est.fit(X_train, y_train)
|
|
145 | 148 |
|
146 | 149 | print("Training HistGradientBoostingRegressor...")
|
147 | 150 | tic = time()
|
148 |
| -est = HistGradientBoostingRegressor() |
| 151 | +est = HistGradientBoostingRegressor(random_state=0) |
149 | 152 | est.fit(X_train, y_train)
|
150 | 153 | print(f"done in {time() - tic:.3f}s")
|
151 | 154 | print(f"Test R2 score: {est.score(X_test, y_test):.2f}")
|
|
233 | 236 | X_train,
|
234 | 237 | features,
|
235 | 238 | kind="average",
|
236 |
| - n_jobs=3, |
237 |
| - grid_resolution=20, |
| 239 | + n_jobs=2, |
| 240 | + grid_resolution=10, |
238 | 241 | ax=ax,
|
239 | 242 | )
|
240 | 243 | print(f"done in {time() - tic:.3f}s")
|
|
265 | 268 |
|
266 | 269 | features = ("AveOccup", "HouseAge")
|
267 | 270 | pdp = partial_dependence(
|
268 |
| - est, X_train, features=features, kind="average", grid_resolution=20 |
| 271 | + est, X_train, features=features, kind="average", grid_resolution=10 |
269 | 272 | )
|
270 | 273 | XX, YY = np.meshgrid(pdp["values"][0], pdp["values"][1])
|
271 | 274 | Z = pdp.average[0].T
|
272 | 275 | ax = Axes3D(fig)
|
273 | 276 | fig.add_axes(ax)
|
| 277 | + |
274 | 278 | surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1, cmap=plt.cm.BuPu, edgecolor="k")
|
275 | 279 | ax.set_xlabel(features[0])
|
276 | 280 | ax.set_ylabel(features[1])
|
|
0 commit comments