@@ -205,6 +205,19 @@ class HuberRegressor(LinearModel, RegressorMixin, BaseEstimator):
205
205
A boolean mask which is set to True where the samples are identified
206
206
as outliers.
207
207
208
+ See Also
209
+ --------
210
+ RANSACRegressor : RANSAC (RANdom SAmple Consensus) algorithm.
211
+ TheilSenRegressor : Theil-Sen Estimator robust multivariate regression model.
212
+ SGDRegressor : Fitted by minimizing a regularized empirical loss with SGD.
213
+
214
+ References
215
+ ----------
216
+ .. [1] Peter J. Huber, Elvezio M. Ronchetti, Robust Statistics
217
+ Concomitant scale estimates, pg 172
218
+ .. [2] Art B. Owen (2006), A robust hybrid of lasso and ridge regression.
219
+ https://statweb.stanford.edu/~owen/reports/hhu.pdf
220
+
208
221
Examples
209
222
--------
210
223
>>> import numpy as np
@@ -227,13 +240,6 @@ class HuberRegressor(LinearModel, RegressorMixin, BaseEstimator):
227
240
Huber coefficients: [17.7906... 31.0106...]
228
241
>>> print("Linear Regression coefficients:", linear.coef_)
229
242
Linear Regression coefficients: [-1.9221... 7.0226...]
230
-
231
- References
232
- ----------
233
- .. [1] Peter J. Huber, Elvezio M. Ronchetti, Robust Statistics
234
- Concomitant scale estimates, pg 172
235
- .. [2] Art B. Owen (2006), A robust hybrid of lasso and ridge regression.
236
- https://statweb.stanford.edu/~owen/reports/hhu.pdf
237
243
"""
238
244
239
245
def __init__ (
@@ -271,6 +277,7 @@ def fit(self, X, y, sample_weight=None):
271
277
Returns
272
278
-------
273
279
self : object
280
+ Fitted `HuberRegressor` estimator.
274
281
"""
275
282
X , y = self ._validate_data (
276
283
X ,
0 commit comments