|
9 | 9 | # Peter Prettenhofer <peter.prettenhofer@gmail.com>
|
10 | 10 | # Mathieu Blondel <mathieu@mblondel.org>
|
11 | 11 | # Lars Buitinck <L.J.Buitinck@uva.nl>
|
| 12 | +# Maryan Morel <maryan.morel@polytechnique.edu> |
12 | 13 | #
|
13 | 14 | # License: BSD 3 clause
|
14 | 15 |
|
@@ -392,6 +393,12 @@ def __init__(self, fit_intercept=True, normalize=False, copy_X=True,
|
392 | 393 | self.copy_X = copy_X
|
393 | 394 | self.n_jobs = n_jobs
|
394 | 395 |
|
| 396 | + @property |
| 397 | + @deprecated("residues_ is deprecated and will be removed in 0.19") |
| 398 | + def residues_(self): |
| 399 | + """Get the residues of the fitted model.""" |
| 400 | + return self._residues |
| 401 | + |
395 | 402 | def fit(self, X, y, sample_weight=None):
|
396 | 403 | """
|
397 | 404 | Fit linear model.
|
@@ -431,16 +438,16 @@ def fit(self, X, y, sample_weight=None):
|
431 | 438 | if y.ndim < 2:
|
432 | 439 | out = sparse_lsqr(X, y)
|
433 | 440 | self.coef_ = out[0]
|
434 |
| - self.residues_ = out[3] |
| 441 | + self._residues = out[3] |
435 | 442 | else:
|
436 | 443 | # sparse_lstsq cannot handle y with shape (M, K)
|
437 | 444 | outs = Parallel(n_jobs=n_jobs_)(
|
438 | 445 | delayed(sparse_lsqr)(X, y[:, j].ravel())
|
439 | 446 | for j in range(y.shape[1]))
|
440 | 447 | self.coef_ = np.vstack(out[0] for out in outs)
|
441 |
| - self.residues_ = np.vstack(out[3] for out in outs) |
| 448 | + self._residues = np.vstack(out[3] for out in outs) |
442 | 449 | else:
|
443 |
| - self.coef_, self.residues_, self.rank_, self.singular_ = \ |
| 450 | + self.coef_, self._residues, self.rank_, self.singular_ = \ |
444 | 451 | linalg.lstsq(X, y)
|
445 | 452 | self.coef_ = self.coef_.T
|
446 | 453 |
|
|
0 commit comments